-
J. Heart Lung Transplant. · Feb 2015
Human recombinant apyrase therapy protects against canine pulmonary ischemia-reperfusion injury.
- Mohsen Ibrahim, Xingan Wang, Carlos A Puyo, Alessandro Montecalvo, Howard J Huang, Ramsey R Hachem, Claudio Andreetti, Cecilia Menna, Ridong Chen, Alexander S Krupnick, Daniel Kreisel, Erino A Rendina, and Andrew E Gelman.
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; Department of Thoracic Surgery, Sapienza University, Rome, Italy.
- J. Heart Lung Transplant. 2015 Feb 1; 34 (2): 247-53.
BackgroundThere is accumulating evidence that extracellular adenosine triphosphate (eATP) promotes many of the underlying mechanisms that exacerbate acute lung injury. However, much of these data are from inbred rodent models, indicating the need for further investigation in higher vertebrates to better establish clinical relevance. To this end we evaluated a human recombinant apyrase therapy in a canine warm pulmonary ischemia-reperfusion injury (IRI) model and measured eATP levels in human lung recipients with or without primary lung graft dysfunction (PGD).MethodsWarm ischemia was induced for 90 minutes in the left lung of 14 mongrel dogs. Seven minutes after reperfusion, the apyrase APT102 (1 mg/kg, n = 7) or saline vehicle (n = 7) was injected into the pulmonary artery. Arterial blood gases were obtained every 30 minutes up to 180 minutes after reperfusion. Bronchioalveolar lavage fluid (BALF) was analyzed for eATP concentration, cellularity, and inflammatory mediator accumulation. Thirty bilateral human lung transplant recipients were graded for immediate early PGD and assessed for BALF eATP levels.ResultsAPT102-treated dogs had progressively better lung function and less pulmonary edema during the 3-hour reperfusion period compared with vehicle-treated controls. Protection from IRI was observed, with lower BALF eATP levels, fewer airway leukocytes, and blunted inflammatory mediator expression. Human lung recipients with moderate to severe PGD had significantly higher eATP levels compared with recipients without this injury.ConclusionsExtracellular ATP accumulates in acutely injured canine and human lungs. Strategies that target eATP reduction may help protect lung recipients from IRI.Copyright © 2015 International Society for Heart and Lung Transplantation. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.