• Clin. Orthop. Relat. Res. · Aug 2014

    Comparative Study

    Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement.

    • Patrick Kane, Bryan Vopat, Wendell Heard, Nikhil Thakur, David Paller, Sarath Koruprolu, and Christopher Born.
    • Department of Orthopaedics, Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA, pmkkane@gmail.com.
    • Clin. Orthop. Relat. Res. 2014 Aug 1; 472 (8): 2492-8.

    BackgroundIntertrochanteric hip fractures pose a significant challenge for the orthopaedic community as optimal surgical treatment continues to be debated. Currently, varus collapse with lag screw cutout is the most common mode of failure. Multiple factors contribute to cutout. From a surgical technique perspective, a tip apex distance less than 25 mm has been suggested to decrease the risk of cutout. We hypothesized that a low-center lag screw position in the femoral head, with a tip apex distance greater than 25 mm will provide equal, if not superior, biomechanical stability compared with a center-center position with a tip apex distance less than 25 mm in an unstable intertrochanteric hip fracture stabilized with a long cephalomedullary nail.Questions/PurposesWe attempted to examine the biomechanical characteristics of intertrochanteric fractures instrumented with long cephalomedullary nails with two separate lag screw positions, center-center and low-center. Our first research purpose was to examine if there was a difference between the center-center and low-center groups in cycles to failure and failure load. Second, we analyzed if there was a difference in fracture translation between the study groups during loading.MethodsNine matched pairs of femurs were assigned to one of two treatment groups: low-center lag screw position and center-center lag screw position. Cephalomedullary nails were placed and tip apex distance was measured. A standard unstable four-part intertrochanteric fracture was created in all samples. The femurs were loaded dynamically until failure. Cycles to failure and load and displacement data were recorded, and three-dimensional (3-D) motion was recorded using an Optotrak(®) motion tracking system.ResultsThere were no significant differences between the low-center and center-center treatment groups regarding the mean number of cycles to failure and mean failure load. The 3-D kinematic data showed significantly increased motion in the center-center group compared with the low-center group. At the time of failure, the magnitude of fracture translation was statistically significantly greater in the center-center group (20 ± 2.8 mm) compared with the low-center group (15 ± 3.4 mm; p = 0.004). Additionally, there was statistically significantly increased fracture gap distraction (center-center group, 13 ± 2.8 versus low-center group, 7 ± 4; p < 0.001) and shear fracture gap translation (center-center group, 12 ± 2.3 mm; low-center group, 6 ± 2.7 mm; p < 0.001).ConclusionsPositioning of the lag screw inferior in the head and neck was found to be at least as biomechanically stable as the center-center group although the tip apex distance was greater than 25 mm.Clinical RelevanceOur findings challenge previously accepted principles of optimal lag screw placement.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…