• BMC anesthesiology · Jan 2021

    Observational Study

    An observational feasibility study - does early limb ergometry affect oxygen delivery and uptake in intubated critically ill patients - a comparison of two assessment methods.

    • Olive M Wilkinson, Andrew Bates, and Rebecca Cusack.
    • Centre for Innovation and Leadership, Faculty of Health Sciences, University of Southampton, Building 45, Room 2035, Highfield Campus, S017 1BJ, Southampton, UK. Olive.Wilkinson@gmail.com.
    • BMC Anesthesiol. 2021 Jan 25; 21 (1): 27.

    BackgroundEarly rehabilitation can reduce ventilation duration and improve functional outcomes in critically ill patients. Upper limb strength is associated with ventilator weaning. Passive muscle loading may preserve muscle fibre function, help recover peripheral muscle strength and improve longer term, post-hospital discharge function capacity. The physiological effects of initiating rehabilitation soon after physiological stabilisation of these patients can be concerning for clinicians. This study investigated the feasibility of measuring metabolic demand and the safety and feasibility of early upper limb passive ergometry. An additional comparison of results, achieved from simultaneous application of the methods, is reported.MethodsThis was an observational feasibility study undertaken in an acute teaching hospital's General Intensive Care Unit in the United Kingdom. Twelve haemodynamically stable, mechanically ventilated patients underwent 30 minutes of arm ergometry. Cardiovascular and respiratory parameters were monitored. A Friedman test identified changes in physiological parameters. A metabolic cart was attached to the ventilator to measure oxygen uptake. Oxygen uptake was concurrently calculated by the reverse Fick method, utilising cardiac output from the LiDCO™ and paired mixed venous and arterial samples. A comparison of the two methods was made. Data collection began 10 minutes before ergometry and continued to recovery. Paired mixed venous and arterial samples were taken every 10 minutes.ResultsTwelve patients were studied; 9 male, median age 55 years, range (27-82), median APACHE score 18.5, range (7-31), median fraction inspired oxygen 42.5%, range (28-60). Eight patients were receiving noradrenaline. Mean dose was 0.07 mcg/kg/min, range (0.01-0.15). Early ergometry was well tolerated. There were no clinically significant changes in respiratory, haemodynamic or metabolic variables pre ergometry to end recovery. There was no significant difference between the two methods of calculating VO2 (p = 0.70).ConclusionsWe report the feasibility of using the reverse Fick method and indirect calorimetry to measure metabolic demand during early physical rehabilitation of critically ill patients. More research is needed to ascertain the most reliable method. Minimal change in metabolic demand supports the safety and feasibility of upper limb ergometry. These results will inform future study designs for further research into exercise response in critically ill patients.Trial RegistrationClinicaltrials.gov No. NCT04383171. Registered on 06 May 2020 - Retrospectively registered. http://www.clinicaltrials.gov .

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.