-
- Cheryl E Hickmann, Natalia R Montecinos-Munoz, Diego Castanares-Zapatero, Ricardo S Arriagada-Garrido, Ursula Jeria-Blanco, Timour Gizzatullin, Jean Roeseler, Jonathan Dugernier, Xavier Wittebole, and Pierre-François Laterre.
- Department of Critical Care Medicine, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium. cheryl.hickmann@uclouvain.be.
- Respir Care. 2021 Feb 1; 66 (2): 253262253-262.
BackgroundEarly mobilization during critical illness is safe and has beneficial effects on functional outcomes. However, its impact on pulmonary function has not been thoroughly explored. We hypothesized that a sitting position out of bed coupled with exercise could result in an improvement in oxygenation and lung aeration.MethodsThe study was conducted on a cohort of adult subjects within a week of their admission to an ICU. Subjects were transferred to a chair and undertook a 15-min session of exercise, either active or passive. Subjects in the control group were only transferred to a chair. Electrical impedance tomography, a reliable bedside technique monitoring regional lung aeration and the distribution of ventilation, was continuously performed, and blood gases were assessed at baseline and 20 min post-exercise.ResultsThe cohort included 40 subjects, 17 of whom were mechanically ventilated and 23 spontaneously breathing. The control group for each modality consisted of 5 mechanically ventilated or 5 spontaneously breathing subjects. Mild hypoxemia was present in 45% of the spontaneously breathing cohort, whereas the mechanically ventilated subjects demonstrated moderate (50%) or severe (12%) hypoxemia. Compared with the control group, early mobilization induced a significant increase in lung aeration. In mechanically ventilated subjects, lung aeration increased, especially in the anterior lung regions (mean impedance [95% CI]: T1 (baseline in bed) = 1,265 [691-1,839]; T2 (chair sitting) = 2,003 [1,042-2,963]; T3 (exercise) = 1,619 [810 2,427]; T4 (post exercise in chair) = 2,320 [1,186-3,455]). In spontaneously breathing subjects, lung aeration increased mainly in the posterior lung regions (mean impedance [95% CI]: T1 = 380 [124-637]; T2 = 655 [226-1,084]; T3 = 621 [335-906]; T4 = 600 [340-860]). [Formula: see text] increased, especially in subjects with lower [Formula: see text] at baseline (< 200) (133 ± 31 to 158 ± 48, P = .041).ConclusionsFor critically ill subjects, a sitting position and exercise increased lung aeration and were associated with an improvement in [Formula: see text] in the more severely hypoxemic subjects.Copyright © 2021 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.