• Critical care medicine · Mar 2021

    Derivation and Validation of an Ensemble Model for the Prediction of Agitation in Mechanically Ventilated Patients Maintained Under Light Sedation.

    • Zhongheng Zhang, Jingtao Liu, Jingjing Xi, Yichun Gong, Lin Zeng, and Penglin Ma.
    • Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
    • Crit. Care Med. 2021 Mar 1; 49 (3): e279-e290.

    ObjectivesLight sedation is recommended over deep sedation for invasive mechanical ventilation to improve clinical outcome but may increase the risk of agitation. This study aimed to develop and prospectively validate an ensemble machine learning model for the prediction of agitation on a daily basis.DesignVariables collected in the early morning were used to develop an ensemble model by aggregating four machine learning algorithms including support vector machines, C5.0, adaptive boosting with classification trees, and extreme gradient boosting with classification trees, to predict the occurrence of agitation in the subsequent 24 hours.SettingThe training dataset was prospectively collected in 95 ICUs from 80 Chinese hospitals on May 11, 2016, and the validation dataset was collected in 20 out of these 95 ICUs on December 16, 2019.PatientsInvasive mechanical ventilation patients who were maintained under light sedation for 24 hours prior to the study day and who were to be maintained at the same sedation level for the next 24 hours.InterventionsNone.Measurements And Main ResultsA total of 578 invasive mechanical ventilation patients from 95 ICUs in 80 Chinese hospitals, including 459 in the training dataset and 119 in the validation dataset, were enrolled. Agitation was observed in 36% (270/578) of the invasive mechanical ventilation patients. The stepwise regression model showed that higher body temperature (odds ratio for 1°C increase: 5.29; 95% CI, 3.70-7.84; p < 0.001), greater minute ventilation (odds ratio for 1 L/min increase: 1.15; 95% CI, 1.02-1.30; p = 0.019), higher Richmond Agitation-Sedation Scale (odds ratio for 1-point increase: 2.43; 95% CI, 1.92-3.16; p < 0.001), and days on invasive mechanical ventilation (odds ratio for 1-d increase: 0.95; 95% CI, 0.93-0.98; p = 0.001) were independently associated with agitation in the subsequent 24 hours. In the validation dataset, the ensemble model showed good discrimination (area under the receiver operating characteristic curve, 0.918; 95% CI, 0.866-0.969) and calibration (Hosmer-Lemeshow test p = 0.459) in predicting the occurrence of agitation within 24 hours.ConclusionsThis study developed an ensemble model for the prediction of agitation in invasive mechanical ventilation patients under light sedation. The model showed good calibration and discrimination in an independent dataset.Copyright © 2021 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…