• Med Phys · Dec 2008

    Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT.

    • Panayiotis Korfiatis, Christina Kalogeropoulou, Anna Karahaliou, Alexandra Kazantzi, Spyros Skiadopoulos, and Lena Costaridou.
    • Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece.
    • Med Phys. 2008 Dec 1; 35 (12): 5290-302.

    AbstractAccurate and automated lung field (LF) segmentation in high-resolution computed tomography (HRCT) is highly challenged by the presence of pathologies affecting lung borders, also affecting the performance of computer-aided diagnosis (CAD) schemes. In this work, a two-dimensional LF segmentation algorithm adapted to interstitial pneumonia (IP) patterns is presented. The algorithm employs k-means clustering followed by a filling operation to obtain an initial LF order estimate. The final LF border is obtained by an iterative support vector machine neighborhood labeling of border pixels based on gray level and wavelet coefficient statistics features. A second feature set based on gray level averaging and gradient features was also investigated to evaluate its effect on segmentation performance of the proposed method. The proposed method is evaluated on a dataset of 22 HRCT cases spanning a range of IP patterns such as ground glass, reticular, and honeycombing. The accuracy of the method is assessed using area overlap and shape differentiation metrics (d(mean), d(rms), and d(max)), by comparing automatically derived lung borders to manually traced ones, and further compared to a gray level thresholding-based (GLT-based) method. Accuracy of the methods evaluated is also compared to interobserver variability. The proposed method incorporating gray level and wavelet coefficient statistics demonstrated the highest segmentation accuracy, averaged over left and right LFs (overlap=0.954, d(mean)=1.080 mm, d(rms)=1.407 mm, and d(max)=4.944 mm), which is statistically significant (two-tailed student's t test for paired data, p<0.0083) with respect to all metrics considered as compared to the proposed method incorporating gray level averaging and gradient features (overlap=0.918, d(mean)=2.354 mm, d(rms)=3.711 mm, and d(max)=14.412 mm) and the GLT-based method (overlap=0.897, d(mean)=3.618 mm, d(rms)=5.007 mm, and d(max)=16.893 mm). The performance of the three segmentation methods, although decreased as IP pattern severity level (mild, moderate, and severe) was increased, did not demonstrate statistically significant difference (two-tailed student's t test for unpaired data, p>0.0167 for all metrics considered). Finally, the accuracy of the proposed method, based on gray level and wavelet coefficient statistics ranges within interobserver variability. The proposed segmentation method could be used as an initial stage of a CAD scheme for IP patterns.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.