-
- Y Tani, K Saito, M Imoto, and T Ohno.
- Suntory Institute for Biomedical Research, Osaka, Japan. yoshihiro_tani@suntory.co.jp
- Eur. J. Pharmacol. 1998 Jun 19; 351 (2): 181-8.
AbstractIn vivo microdialysis was used to investigate nicotinic receptor-mediated acetylcholine release in the hippocampus, frontal cortex, and striatum of freely moving rats. Intraperitoneal administration of (-)-nicotine increased the release of acetylcholine in the hippocampus and frontal cortex but not in the striatum. (-)-Nicotine exhibited a bell-shaped dose-response relationship, and showed attenuation of response at the highest dose (5.0 mg/kg i.p.) in both the hippocampus and frontal cortex. In the hippocampus, (-)-nicotine (1.0 mg/kg i.p.)-induced increase of acetylcholine release was blocked by pretreatment with the centrally acting nicotinic receptor channel blocker, mecamylamine (1.0 mg/kg i.p.), but not by hexamethonium (5.0 mg/kg i.p.), suggesting that the effects of (-)-nicotine were mediated by the central nicotinic receptor. (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418, 1.0 and 5.0 mg/kg i.p.), reported to be a selective agonist for alpha4beta2 nicotinic receptor subunits, also enhanced the release of acetylcholine in the hippocampus, while 3-(2,4-dimethoxybenzlidene)-anabaseine (GTS-21, 1.0 and 5.0 mg/kg i.p.), which has high affinity for the alpha7 nicotinic receptor subunit, was without effect. The natural alkaloids isolated from plants, (-)-cytisine and (-)-lobeline, had little effect on acetylcholine release from the hippocampus. A competitive antagonist for alpha4beta2 subunits of the nicotinic receptor, dihydro-beta-erythroidine, and a partial agonist for the beta2 subunit-containing nicotinic receptor, (-)-cytisine, inhibited (-)-nicotine-induced increase of acetylcholine release from the hippocampus, whereas a selective antagonist for the alpha7 subunit, methyllycaconitine, and a partial agonist for the alpha3 subunit-containing nicotinic receptor, (-)-lobeline, did not. These results indicate that there are certain differences among brain regions in the response of nicotinic receptor-mediated acetylcholine release and that (-)-nicotine-induced acetylcholine release in the rat hippocampus may be attributed to activation of the alpha4beta2 nicotinic receptor subunits.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.