• Handchir Mikrochir Plast Chir · Apr 2019

    [Imaging of bacteria in burn wounds treated with split-thicknessgrafts in MEEK/MESH technique: a pilot study with first experiences in clinical wound evaluation with autofluorescence].

    • Seyed Arash Alawi, Anne Limbourg, Sarah Strauss, and Peter M Vogt.
    • Medizinische Hochschule Hannover, Klinik für Plastische, Ästhetische, Hand- und Wiederherstellungschirurgie, Replantationszentrum Niedersachsen, Schwerbrandverletztenzentrum Niedersachsen.
    • Handchir Mikrochir Plast Chir. 2019 Apr 1; 51 (2): 130-138.

    BackgroundPartial and full thickness burns require surgical treatment, such as early débridement and skin transplantation in MEEK/MESH technique or further reconstructive surgery. Infections of burns or transplanted areas limit surgical success and increase patient mortality. For split-thickness grafts in MEEK technique a superficial silk is applied as a protective on-top dressing, whereas in MESH technique fatty gauze and foam are used as standard protective covers over five to seven days. However, wound occlusion by both materials provides the soil for growth of microorganisms. The timely identification of impending infections is necessary to initiate early removal in order to safe and preserve skin grafts. Early identification of infections and removal of foreign material should therefore be attempted.Material And MethodsBurn wounds treated with split-thickness skin grafts processed by MEEK/MESH technique and covered with silk or foam overlayers were analyzed for signs of bacterial infection using the MolecuLight i:X™ device. In addition, swaps for microbiological analysis where taken from fluorescent areas and correlated with florescent image results.ResultsWe examined burn wounds (n = 14) of three different intensive care patients. The MolecuLight i:X™ camera showed a strong colonization of the transplanted areas and foreign materials, that were in line with microbiological analysis findings. The representation of the excitation load showed high values in the foreign materials. The take rate of MEEK-transplants was 90 % compared to MESH-transplanted with about 60 %. The positive predictive value was 81.8 % for detection of a wound infection with autofluorescence. The negative predictive value was 90.3 % with a sensitivity of 86.7 % and a specificity of 87.5 %.ConclusionThe representation of the fluorescence exciter load shows high concentrations of pathogens both in the MEEK silk layer as well as in foam linkers. Overall split-thickness grafts according to the MEEK technique showed a higher healing rate compared to MESH technique. Screening of burns wounds with autofluorescence imaging can be helpful for an additive wound assessment. Split-thickness graft covers should be applied only for a minimum time period required to ensure stable grafting.© Georg Thieme Verlag KG Stuttgart · New York.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…