-
Observational Study
Electronic health records accurately predict renal replacement therapy in acute kidney injury.
- Sanmay Low, Anantharaman Vathsala, Tanusya Murali Murali, Long Pang, Graeme MacLaren, Wan-Ying Ng, Sabrina Haroon, Amartya Mukhopadhyay, Shir-Lynn Lim, Bee-Hong Tan, Titus Lau, and Horng-Ruey Chua.
- Division of Nephrology, University Medicine Cluster, National University Hospital, Level 10 Medicine Office, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- Bmc Nephrol. 2019 Jan 31; 20 (1): 32.
BackgroundElectronic health records (EHR) detect the onset of acute kidney injury (AKI) in hospitalized patients, and may identify those at highest risk of mortality and renal replacement therapy (RRT), for earlier targeted intervention.MethodsProspective observational study to derive prediction models for hospital mortality and RRT, in inpatients aged ≥18 years with AKI detected by EHR over 1 year in a tertiary institution, fulfilling modified KDIGO criterion based on serial serum creatinine (sCr) measures.ResultsWe studied 3333 patients with AKI, of 77,873 unique patient admissions, giving an AKI incidence of 4%. KDIGO AKI stages at detection were 1(74%), 2(15%), 3(10%); corresponding peak AKI staging in hospital were 61, 20, 19%. 392 patients (12%) died, and 174 (5%) received RRT. Multivariate logistic regression identified AKI onset in ICU, haematological malignancy, higher delta sCr (sCr rise from AKI detection till peak), higher serum potassium and baseline eGFR, as independent predictors of both mortality and RRT. Additionally, older age, higher serum urea, pneumonia and intraabdominal infections, acute cardiac diseases, solid organ malignancy, cerebrovascular disease, current need for RRT and admission under a medical specialty predicted mortality. The AUROC for RRT prediction was 0.94, averaging 0.93 after 10-fold cross-validation. Corresponding AUROC for mortality prediction was 0.9 and 0.9 after validation. Decision tree analysis for RRT prediction achieved a balanced accuracy of 70.4%, and identified delta-sCr ≥ 148 μmol/L as the key factor that predicted RRT.ConclusionCase fatality was high with significant renal deterioration following hospital-wide AKI. EHR clinical model was highly accurate for both RRT prediction and for mortality; allowing excellent risk-stratification with potential for real-time deployment.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.