-
- Neetu Mahendraker, Mindy Flanagan, Jose Azar, and Linda S Williams.
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN, USA. nmahendraker@iuhealth.org.
- J Gen Intern Med. 2021 Aug 1; 36 (8): 2244-2250.
BackgroundPredicting the risk of in-hospital mortality on admission is challenging but essential for risk stratification of patient outcomes and designing an appropriate plan-of-care, especially among transferred patients.ObjectiveDevelop a model that uses administrative and clinical data within 24 h of transfer to predict 30-day in-hospital mortality at an Academic Health Center (AHC).DesignRetrospective cohort study. We used 30 putative variables in a multiple logistic regression model in the full data set (n = 10,389) to identify 20 candidate variables obtained from the electronic medical record (EMR) within 24 h of admission that were associated with 30-day in-hospital mortality (p < 0.05). These 20 variables were tested using multiple logistic regression and area under the curve (AUC)-receiver operating characteristics (ROC) analysis to identify an optimal risk threshold score in a randomly split derivation sample (n = 5194) which was then examined in the validation sample (n = 5195).ParticipantsTen thousand three hundred eighty-nine patients greater than 18 years transferred to the Indiana University (IU)-Adult Academic Health Center (AHC) between 1/1/2016 and 12/31/2017.Main MeasuresSensitivity, specificity, positive predictive value, C-statistic, and risk threshold score of the model.Key ResultsThe final model was strongly discriminative (C-statistic = 0.90) and had a good fit (Hosmer-Lemeshow goodness-of-fit test [X2 (8) =6.26, p = 0.62]). The positive predictive value for 30-day in-hospital death was 68%; AUC-ROC was 0.90 (95% confidence interval 0.89-0.92, p < 0.0001). We identified a risk threshold score of -2.19 that had a maximum sensitivity (79.87%) and specificity (85.24%) in the derivation and validation sample (sensitivity: 75.00%, specificity: 85.71%). In the validation sample, 34.40% (354/1029) of the patients above this threshold died compared to only 2.83% (118/4166) deaths below this threshold.ConclusionThis model can use EMR and administrative data within 24 h of transfer to predict the risk of 30-day in-hospital mortality with reasonable accuracy among seriously ill transferred patients.© 2021. Society of General Internal Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.