-
- Huei-Yen Winnie Chen and Birsen Donmez.
- University of Toronto, Department of Mechanical and Industrial Engineering, Canada.
- Accid Anal Prev. 2016 Jun 1; 91: 166-74.
BackgroundWith the proliferation of new mobile and in-vehicle technologies, understanding the motivations behind a driver's voluntary engagement with such technologies is crucial from a safety perspective, yet is complex. Previous literature either surveyed a large number of distractions that may be diverse, or too focuses on one particular activity, such as cell phone use. Further, earlier studies about social-psychological factors underlying driver distraction tend to focus on one or two factors in-depth, and those that examine a more comprehensive set of factors are often limited in their analyses methods.ObjectiveThe present work considers a wide array of social-psychological factors within a structural equation model to predict their influence on a focused set of technology-based distractions. A better understanding of these facilitators can enhance the design of distraction mitigation strategies.MethodWe analysed survey responses about three technology-based driver distractions: holding phone conversations, manually interacting with cell phones, and adjusting the settings of in-vehicle technology, as well as responses on five social-psychological factors: attitude, descriptive norm, injunctive norm, technology inclination, and a risk/sensation seeking personality. Using data collected from 525 drivers (ages: 18-80), a structural equation model was built to analyse these social-psychological factors as latent variables influencing self-reported engagement in these three technology-based distractions.ResultsSelf-reported engagement in technology-based distractions was found to be largely influenced by attitudes about the distractions. Personality and social norms also played a significant role, but technology inclination did not. A closer look at two age groups (18-30 and 30+) showed that the effect of social norms, especially of injunctive norm (i.e., perceived approvals), was less prominent in the 30+ age group, while personality remained a significant predictor for the 30+ age group but marginally significant for the younger group.ConclusionFindings from this work provide insights into the social-psychological factors behind intentional engagement in technology-based distractions and in particular suggesting that these factors may be sensitive to demographic differences.Copyright © 2016. Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.