• IEEE Trans Med Imaging · Apr 2005

    Clinical Trial

    Vessel tree reconstruction in thoracic CT scans with application to nodule detection.

    • Gady Agam, Samuel G Armato, and Changhua Wu.
    • Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616, USA. agam@iit.edu
    • IEEE Trans Med Imaging. 2005 Apr 1; 24 (4): 486-99.

    AbstractVessel tree reconstruction in volumetric data is a necessary prerequisite in various medical imaging applications. Specifically, when considering the application of automated lung nodule detection in thoracic computed tomography (CT) scans, vessel trees can be used to resolve local ambiguities based on global considerations and so improve the performance of nodule detection algorithms. In this study, a novel approach to vessel tree reconstruction and its application to nodule detection in thoracic CT scans was developed by using correlation-based enhancement filters and a fuzzy shape representation of the data. The proposed correlation-based enhancement filters depend on first-order partial derivatives and so are less sensitive to noise compared with Hessian-based filters. Additionally, multiple sets of eigenvalues are used so that a distinction between nodules and vessel junctions becomes possible. The proposed fuzzy shape representation is based on regulated morphological operations that are less sensitive to noise. Consequently, the vessel tree reconstruction algorithm can accommodate vessel bifurcation and discontinuities. A quantitative performance evaluation of the enhancement filters and of the vessel tree reconstruction algorithm was performed. Moreover, the proposed vessel tree reconstruction algorithm reduced the number of false positives generated by an existing nodule detection algorithm by 38%.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.