• Plos One · Jan 2009

    Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking.

    • Osbaldo Resendis-Antonio.
    • Center for Genomic Sciences-UNAM, Cuernavaca Morelos, Mexico. resendis@ccg.unam.mx
    • Plos One. 2009 Jan 1; 4 (3): e4967.

    BackgroundIntegrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network.Methodology/Principal FindingsThis paper presents a statistic framework capable to study how and how fast the metabolites participating in a perturbed metabolic network reach a steady-state. Instead of requiring accurate kinetic information, this approach uses high throughput metabolome technology to define a feasible kinetic library, which constitutes the base for identifying, statistical and dynamical properties during the relaxation. For the sake of illustration we have applied this approach to the human Red blood cell metabolism (hRBC) and its capacity to predict temporal phenomena was evaluated. Remarkable, the main dynamical properties obtained from a detailed kinetic model in hRBC were recovered by our statistical approach. Furthermore, robust properties in time scale and metabolite organization were identify and one concluded that they are a consequence of the combined performance of redundancies and variability in metabolite participation.Conclusions/SignificanceIn this work we present an approach that integrates high throughput metabolome data to define the dynamic behavior of a slightly perturbed metabolic network where kinetic information is lacking. Having information of metabolite concentrations at steady-state, this method has significant relevance due its potential scope to analyze others genome scale metabolic reconstructions. Thus, I expect this approach will significantly contribute to explore the relationship between dynamic and physiology in other metabolic reconstructions, particularly those whose kinetic information is practically nulls. For instances, I envisage that this approach can be useful in genomic medicine or pharmacogenomics, where the estimation of time scales and the identification of metabolite organization may be crucial to characterize and identify (dis)functional stages.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.