• J. Med. Internet Res. · Oct 2020

    Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing.

    • Jose Luis Izquierdo, Julio Ancochea, Savana COVID-19 Research Group, and Joan B Soriano.
    • Hospital Universitario de Guadalajara, Guadalajara, Spain.
    • J. Med. Internet Res. 2020 Oct 28; 22 (10): e21801.

    BackgroundMany factors involved in the onset and clinical course of the ongoing COVID-19 pandemic are still unknown. Although big data analytics and artificial intelligence are widely used in the realms of health and medicine, researchers are only beginning to use these tools to explore the clinical characteristics and predictive factors of patients with COVID-19.ObjectiveOur primary objectives are to describe the clinical characteristics and determine the factors that predict intensive care unit (ICU) admission of patients with COVID-19. Determining these factors using a well-defined population can increase our understanding of the real-world epidemiology of the disease.MethodsWe used a combination of classic epidemiological methods, natural language processing (NLP), and machine learning (for predictive modeling) to analyze the electronic health records (EHRs) of patients with COVID-19. We explored the unstructured free text in the EHRs within the Servicio de Salud de Castilla-La Mancha (SESCAM) Health Care Network (Castilla-La Mancha, Spain) from the entire population with available EHRs (1,364,924 patients) from January 1 to March 29, 2020. We extracted related clinical information regarding diagnosis, progression, and outcome for all COVID-19 cases.ResultsA total of 10,504 patients with a clinical or polymerase chain reaction-confirmed diagnosis of COVID-19 were identified; 5519 (52.5%) were male, with a mean age of 58.2 years (SD 19.7). Upon admission, the most common symptoms were cough, fever, and dyspnea; however, all three symptoms occurred in fewer than half of the cases. Overall, 6.1% (83/1353) of hospitalized patients required ICU admission. Using a machine-learning, data-driven algorithm, we identified that a combination of age, fever, and tachypnea was the most parsimonious predictor of ICU admission; patients younger than 56 years, without tachypnea, and temperature <39 degrees Celsius (or >39 ºC without respiratory crackles) were not admitted to the ICU. In contrast, patients with COVID-19 aged 40 to 79 years were likely to be admitted to the ICU if they had tachypnea and delayed their visit to the emergency department after being seen in primary care.ConclusionsOur results show that a combination of easily obtainable clinical variables (age, fever, and tachypnea with or without respiratory crackles) predicts whether patients with COVID-19 will require ICU admission.©Jose Luis Izquierdo, Julio Ancochea, Savana COVID-19 Research Group, Joan B Soriano. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.10.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.