• Journal of neurosurgery · Jan 2014

    Stromal cell-derived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls.

    • Brian L Hoh, Koji Hosaka, Daniel P Downes, Kamil W Nowicki, Erin N Wilmer, Gregory J Velat, and Edward W Scott.
    • Departments of Neurological Surgery and.
    • J. Neurosurg.. 2014 Jan 1;120(1):73-86.

    ObjectA small percentage of cerebral aneurysms rupture, but when they do, the effects are devastating. Current management of unruptured aneurysms consists of surgery, endovascular treatment, or watchful waiting. If the biology of how aneurysms grow and rupture were better known, a novel drug could be developed to prevent unruptured aneurysms from rupturing. Ruptured cerebral aneurysms are characterized by inflammation-mediated wall remodeling. The authors studied the role of stromal cell-derived factor-1 (SDF-1) in inflammation-mediated wall remodeling in cerebral aneurysms.MethodsHuman aneurysms, murine carotid artery aneurysms, and murine intracranial aneurysms were studied using immunohistochemistry. Flow cytometry analysis was performed on blood from mice developing carotid or intracranial aneurysms. The effect of SDF-1 on endothelial cells and macrophages was studied by chemotaxis cell migration assay and capillary tube formation assay. Anti-SDF-1 blocking antibody was given to mice and compared with control (vehicle)-administered mice for its effects on the walls of carotid aneurysms and the development of intracranial aneurysms.ResultsHuman aneurysms, murine carotid aneurysms, and murine intracranial aneurysms all expressed SDF-1, and mice with developing carotid or intracranial aneurysms had increased progenitor cells expressing CXCR4, the receptor for SDF-1 (p < 0.01 and p < 0.001, respectively). Human aneurysms and murine carotid aneurysms had endothelial cells, macrophages, and capillaries in the walls of the aneurysms, and the presence of capillaries in the walls of human aneurysms was associated with the presence of macrophages (p = 0.01). Stromal cell-derived factor-1 promoted endothelial cell and macrophage migration (p < 0.01 for each), and promoted capillary tube formation (p < 0.001). When mice were given anti-SDF-1 blocking antibody, there was a significant reduction in endothelial cells (p < 0.05), capillaries (p < 0.05), and cell proliferation (p < 0.05) in the aneurysm wall. Mice given anti-SDF-1 blocking antibody developed significantly fewer intracranial aneurysms (33% vs 89% in mice given control immunoglobulin G, respectively; p < 0.05).ConclusionsThese data suggest SDF-1 is associated with angiogenesis and inflammatory cell migration and proliferation in the walls of aneurysms, and may have a role in the development of intracranial aneurysms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.