-
Medical image analysis · Dec 2013
A theoretical framework for quantifying blood volume flow rate from dynamic angiographic data and application to vessel-encoded arterial spin labeling MRI.
- Thomas W Okell, Michael A Chappell, and Peter Jezzard.
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. Electronic address: tokell@fmrib.ox.ac.uk.
- Med Image Anal. 2013 Dec 1; 17 (8): 1025-36.
AbstractAngiographic methods can provide valuable information on vessel morphology and hemodynamics, but are often qualitative in nature, somewhat limiting their ability for comparison across arteries and subjects. In this work we present a method for quantifying absolute blood volume flow rates within large vessels using dynamic angiographic data. First, a kinetic model incorporating relative blood volume, bolus dispersion and signal attenuation is fitted to the data. A self-calibration method is also described for both 2D and 3D data sets to convert the relative blood volume parameter into absolute units. The parameter values are then used to simulate the signal arising from a very short bolus, in the absence of signal attenuation, which can be readily encompassed within a vessel mask of interest. The volume flow rate can then be determined by calculating the resultant blood volume within the vessel mask divided by the simulated bolus duration. This method is applied to non-contrast magnetic resonance imaging data from a flow phantom and also to the cerebral arteries of healthy volunteers acquired using a 2D vessel-encoded pseudocontinuous arterial spin labeling pulse sequence. This allows the quantitative flow contribution in downstream vessels to be determined from each major brain-feeding artery. Excellent agreement was found between the actual and estimated flow rates in the phantom, particularly below 4.5 ml/s, typical of the cerebral vasculature. Flow rates measured in healthy volunteers were generally consistent with values found in the literature. This method is likely to be of use in patients with a variety of cerebrovascular diseases, such as the assessment of collateral flow in patients with steno-occlusive disease or the evaluation of arteriovenous malformations.Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.