-
Int J Comput Assist Radiol Surg · Jan 2016
A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia.
- Abhilash Rakkunedeth Hareendranathan, Myles Mabee, Kumaradevan Punithakumar, Michelle Noga, and Jacob L Jaremko.
- 2A2.42 Walter Mackenzie Health Sciences Centre, Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, T6G 2B7, Canada. hareendr@ualberta.ca.
- Int J Comput Assist Radiol Surg. 2016 Jan 1; 11 (1): 31-42.
PurposeAutomatic segmentation of anatomical structures and lesions from medical ultrasound images is a formidable challenge in medical imaging due to image noise, blur and artifacts. In this paper we present a segmentation technique with features highly suited to use in noisy 3D ultrasound volumes and demonstrate its use in modeling bone, specifically the acetabulum in infant hips. Quantification of the acetabular shape is crucial in diagnosing developmental dysplasia of the hip (DDH), a common condition associated with hip dislocation and premature osteoarthritis if not treated. The well-established Graf technique for DDH diagnosis has been criticized for high inter-observer and inter-scan variability. In our earlier work we have introduced a more reliable instability metric based on 3D ultrasound data. Visualizing and interpreting the acetabular shape from noisy 3D ultrasound volumes has been one of the major roadblocks in using 3D ultrasound as diagnostic tool for DDH. For this study we developed a semiautomated segmentation technique to rapidly generate 3D acetabular surface models and classified the acetabulum based on acetabular contact angle (ACA) derived from the models. We tested the feasibility and reliability of the technique compared with manual segmentation.MethodsThe proposed segmentation algorithm is based on graph search. We formulate segmentation of the acetabulum as an optimal path finding problem on an undirected weighted graph. Slice contours are defined as the optimal path passing through a set of user-defined seed points in the graph, and it can be found using dynamic programming techniques (in this case Dijkstra's algorithm). Slice contours are then interpolated over the 3D volume to generate the surface model. A three-dimensional ACA was calculated using normal vectors of the surface model.ResultsThe algorithm was tested over an extensive dataset of 51 infant ultrasound hip volumes obtained from 42 subjects with normal to dysplastic hips. The contours generated by the segmentation algorithm closely matched with those obtained from manual segmentation. The average RMS errors between the semiautomated and manual segmentation for the 51 volumes were 0.28 mm/1.1 voxel (with 2 node points) and 0.24 mm/0.9 voxel (with 3 node points). The semiautomatic algorithm gave visually acceptable results on images with moderate levels of noise and was able to trace the boundary of the acetabulum even in the presence of significant shadowing. Semiautomatic contouring was also faster than manual segmentation at 37 versus 56 s per scan. It also improved the repeatability of the ACA calculation with inter-observer and intra-observer variability of 1.4 ± 0.9 degree and 1.4 ± 1.0 degree.ConclusionThe semiautomatic segmentation technique proposed in this work offers a fast and reliable method to delineate the contours of the acetabulum from 3D ultrasound volumes of the hip. Since the technique does not rely upon contour evolution, it is less susceptible than other methods to the frequent missing or incomplete boundaries and noise artifacts common in ultrasound images. ACA derived from the segmented 3D surface was able to accurately classify the acetabulum under the categories normal, borderline and dysplastic. The semiautomatic technique makes it easier to segment the volume and reduces the inter-observer and intra-observer variation in ACA calculation compared with manual segmentation. The method can be applied to any structure with an echogenic boundary on ultrasound (such as a ventricle, blood vessel, organ or tumor), or even to structures with a bright border on computed tomography or magnetic resonance imaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.