• Br J Anaesth · Apr 2021

    Clinical Trial Observational Study

    Deep learning models for the prediction of intraoperative hypotension.

    • Solam Lee, Hyung-Chul Lee, Yu Seong Chu, Seung Woo Song, Gyo Jin Ahn, Hunju Lee, Sejung Yang, and Sang Baek Koh.
    • Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
    • Br J Anaesth. 2021 Apr 1; 126 (4): 808-817.

    BackgroundIntraoperative hypotension is associated with a risk of postoperative organ dysfunction. In this study, we aimed to present deep learning algorithms for real-time predictions 5, 10, and 15 min before a hypotensive event.MethodsIn this retrospective observational study, deep learning algorithms were developed and validated using biosignal waveforms acquired from patient monitoring of noncardiac surgery. The classification model was a binary classifier of a hypotensive event (MAP <65 mm Hg) or a non-hypotensive event by analysing biosignal waveforms. The regression model was developed to directly estimate the MAP. The primary outcome was area under the receiver operating characteristic (AUROC) curve and the mean absolute error (MAE).ResultsIn total, 3301 patients were included. For invasive models, the multichannel model with an arterial pressure waveform, electrocardiography, photoplethysmography, and capnography showed greater AUROC than the arterial-pressure-only models (AUROC15-min, 0.897 [95% confidence interval {CI}: 0.894-0.900] vs 0.891 [95% CI: 0.888-0.894]) and lesser MAE (MAE15-min, 7.76 mm Hg [95% CI: 7.64-7.87 mm Hg] vs 8.12 mm Hg [95% CI: 8.02-8.21 mm Hg]). For the noninvasive models, the multichannel model showed greater AUROCs than that of the photoplethysmography-only models (AUROC15-min, 0.762 [95% CI: 0.756-0.767] vs 0.694 [95% CI: 0.686-0.702]) and lesser MAEs (MAE15-min, 11.68 mm Hg [95% CI: 11.57-11.80 mm Hg] vs 12.67 [95% CI: 12.56-12.79 mm Hg]).ConclusionsDeep learning models can predict hypotensive events based on biosignals acquired using invasive and noninvasive patient monitoring. In addition, the model shows better performance when using combined rather than single signals.Copyright © 2021 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.