• Open Forum Infect Dis · Jul 2020

    An "Infodemic": Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak.

    • Richard J Medford, Sameh N Saleh, Andrew Sumarsono, Trish M Perl, and Christoph U Lehmann.
    • University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, Dallas, Texas, USA.
    • Open Forum Infect Dis. 2020 Jul 1; 7 (7): ofaa258.

    BackgroundTwitter has been used to track trends and disseminate health information during viral epidemics. On January 21, 2020, the Centers for Disease Control and Prevention activated its Emergency Operations Center and the World Health Organization released its first situation report about coronavirus disease 2019 (COVID-19), sparking significant media attention. How Twitter content and sentiment evolved in the early stages of the COVID-19 pandemic has not been described.MethodsWe extracted tweets matching hashtags related to COVID-19 from January 14 to 28, 2020 using Twitter's application programming interface. We measured themes and frequency of keywords related to infection prevention practices. We performed a sentiment analysis to identify the sentiment polarity and predominant emotions in tweets and conducted topic modeling to identify and explore discussion topics over time. We compared sentiment, emotion, and topics among the most popular tweets, defined by the number of retweets.ResultsWe evaluated 126 049 tweets from 53 196 unique users. The hourly number of COVID-19-related tweets starkly increased from January 21, 2020 onward. Approximately half (49.5%) of all tweets expressed fear and approximately 30% expressed surprise. In the full cohort, the economic and political impact of COVID-19 was the most commonly discussed topic. When focusing on the most retweeted tweets, the incidence of fear decreased and topics focused on quarantine efforts, the outbreak and its transmission, as well as prevention.ConclusionsTwitter is a rich medium that can be leveraged to understand public sentiment in real-time and potentially target individualized public health messages based on user interest and emotion.© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…