• J. Med. Internet Res. · Sep 2020

    Multicenter Study

    Public Perceptions and Attitudes Toward COVID-19 Nonpharmaceutical Interventions Across Six Countries: A Topic Modeling Analysis of Twitter Data.

    • Caitlin Doogan, Wray Buntine, Henry Linger, and Samantha Brunt.
    • Department of Human Centred Computing, Faculty of Information Technology, Monash University, Caulfield, Australia.
    • J. Med. Internet Res. 2020 Sep 3; 22 (9): e21419.

    BackgroundNonpharmaceutical interventions (NPIs) (such as wearing masks and social distancing) have been implemented by governments around the world to slow the spread of COVID-19. To promote public adherence to these regimes, governments need to understand the public perceptions and attitudes toward NPI regimes and the factors that influence them. Twitter data offer a means to capture these insights.ObjectiveThe objective of this study is to identify tweets about COVID-19 NPIs in six countries and compare the trends in public perceptions and attitudes toward NPIs across these countries. The aim is to identify factors that influenced public perceptions and attitudes about NPI regimes during the early phases of the COVID-19 pandemic.MethodsWe analyzed 777,869 English language tweets about COVID-19 NPIs in six countries (Australia, Canada, New Zealand, Ireland, the United Kingdom, and the United States). The relationship between tweet frequencies and case numbers was assessed using a Pearson correlation analysis. Topic modeling was used to isolate tweets about NPIs. A comparative analysis of NPIs between countries was conducted.ResultsThe proportion of NPI-related topics, relative to all topics, varied between countries. The New Zealand data set displayed the greatest attention to NPIs, and the US data set showed the lowest. The relationship between tweet frequencies and case numbers was statistically significant only for Australia (r=0.837, P<.001) and New Zealand (r=0.747, P<.001). Topic modeling produced 131 topics related to one of 22 NPIs, grouped into seven NPI categories: Personal Protection (n=15), Social Distancing (n=9), Testing and Tracing (n=10), Gathering Restrictions (n=18), Lockdown (n=42), Travel Restrictions (n=14), and Workplace Closures (n=23). While less restrictive NPIs gained widespread support, more restrictive NPIs were perceived differently across countries. Four characteristics of these regimes were seen to influence public adherence to NPIs: timeliness of implementation, NPI campaign strategies, inconsistent information, and enforcement strategies.ConclusionsTwitter offers a means to obtain timely feedback about the public response to COVID-19 NPI regimes. Insights gained from this analysis can support government decision making, implementation, and communication strategies about NPI regimes, as well as encourage further discussion about the management of NPI programs for global health events, such as the COVID-19 pandemic.©Caitlin Doogan, Wray Buntine, Henry Linger, Samantha Brunt. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.08.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…