• J. Med. Internet Res. · Oct 2020

    Social Media Use, eHealth Literacy, Disease Knowledge, and Preventive Behaviors in the COVID-19 Pandemic: Cross-Sectional Study on Chinese Netizens.

    • Xiaojing Li and Qinliang Liu.
    • Center for Health and Medical Communication, School of Media & Communication, Shanghai Jiao Tong University, Shanghai, China.
    • J. Med. Internet Res. 2020 Oct 9; 22 (10): e19684.

    BackgroundSince its outbreak in January 2020, COVID-19 has quickly spread worldwide and has become a global pandemic. Social media platforms have been recognized as important tools for health-promoting practices in public health, and the use of social media is widespread among the public. However, little is known about the effects of social media use on health promotion during a pandemic such as COVID-19.ObjectiveIn this study, we aimed to explore the predictive role of social media use on public preventive behaviors in China during the COVID-19 pandemic and how disease knowledge and eHealth literacy moderated the relationship between social media use and preventive behaviors.MethodsA national web-based cross-sectional survey was conducted by a proportionate probability sampling among 802 Chinese internet users ("netizens") in February 2020. Descriptive statistics, Pearson correlations, and hierarchical multiple regressions were employed to examine and explore the relationships among all the variables.ResultsAlmost half the 802 study participants were male (416, 51.9%), and the average age of the participants was 32.65 years. Most of the 802 participants had high education levels (624, 77.7%), had high income >¥5000 (US $736.29) (525, 65.3%), were married (496, 61.8%), and were in good health (486, 60.6%). The average time of social media use was approximately 2 to 3 hours per day (mean 2.34 hours, SD 1.11), and the most frequently used media types were public social media (mean score 4.49/5, SD 0.78) and aggregated social media (mean score 4.07/5, SD 1.07). Social media use frequency (β=.20, P<.001) rather than time significantly predicted preventive behaviors for COVID-19. Respondents were also equipped with high levels of disease knowledge (mean score 8.15/10, SD 1.43) and eHealth literacy (mean score 3.79/5, SD 0.59). Disease knowledge (β=.11, P=.001) and eHealth literacy (β=.27, P<.001) were also significant predictors of preventive behaviors. Furthermore, eHealth literacy (P=.038) and disease knowledge (P=.03) positively moderated the relationship between social media use frequency and preventive behaviors, while eHealth literacy (β=.07) affected this relationship positively and disease knowledge (β=-.07) affected it negatively. Different social media types differed in predicting an individual's preventive behaviors for COVID-19. Aggregated social media (β=.22, P<.001) was the best predictor, followed by public social media (β=.14, P<.001) and professional social media (β=.11, P=.002). However, official social media (β=.02, P=.597) was an insignificant predictor.ConclusionsSocial media is an effective tool to promote behaviors to prevent COVID-19 among the public. Health literacy is essential for promotion of individual health and influences the extent to which the public engages in preventive behaviors during a pandemic. Our results not only enrich the theoretical paradigm of public health management and health communication but also have practical implications in pandemic control for China and other countries.©Xiaojing Li, Qinliang Liu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.10.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…