• J. Med. Internet Res. · Apr 2018

    Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access.

    • Tim Mackey, Janani Kalyanam, Josh Klugman, Ella Kuzmenko, and Rashmi Gupta.
    • Division of Infectious Disease and Global Public Health, Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, CA, United States.
    • J. Med. Internet Res. 2018 Apr 27; 20 (4): e10029.

    BackgroundOn December 6 and 7, 2017, the US Department of Health and Human Services (HHS) hosted its first Code-a-Thon event aimed at leveraging technology and data-driven solutions to help combat the opioid epidemic. The authors—an interdisciplinary team from academia, the private sector, and the US Centers for Disease Control and Prevention—participated in the Code-a-Thon as part of the prevention track.ObjectiveThe aim of this study was to develop and deploy a methodology using machine learning to accurately detect the marketing and sale of opioids by illicit online sellers via Twitter as part of participation at the HHS Opioid Code-a-Thon event.MethodsTweets were collected from the Twitter public application programming interface stream filtered for common prescription opioid keywords in conjunction with participation in the Code-a-Thon from November 15, 2017 to December 5, 2017. An unsupervised machine learning–based approach was developed and used during the Code-a-Thon competition (24 hours) to obtain a summary of the content of the tweets to isolate those clusters associated with illegal online marketing and sale using a biterm topic model (BTM). After isolating relevant tweets, hyperlinks associated with these tweets were reviewed to assess the characteristics of illegal online sellers.ResultsWe collected and analyzed 213,041 tweets over the course of the Code-a-Thon containing keywords codeine, percocet, vicodin, oxycontin, oxycodone, fentanyl, and hydrocodone. Using BTM, 0.32% (692/213,041) tweets were identified as being associated with illegal online marketing and sale of prescription opioids. After removing duplicates and dead links, we identified 34 unique “live” tweets, with 44% (15/34) directing consumers to illicit online pharmacies, 32% (11/34) linked to individual drug sellers, and 21% (7/34) used by marketing affiliates. In addition to offering the “no prescription” sale of opioids, many of these vendors also sold other controlled substances and illicit drugs.ConclusionsThe results of this study are in line with prior studies that have identified social media platforms, including Twitter, as a potential conduit for supply and sale of illicit opioids. To translate these results into action, authors also developed a prototype wireframe for the purposes of detecting, classifying, and reporting illicit online pharmacy tweets selling controlled substances illegally to the US Food and Drug Administration and the US Drug Enforcement Agency. Further development of solutions based on these methods has the potential to proactively alert regulators and law enforcement agencies of illegal opioid sales, while also making the online environment safer for the public.©Tim Mackey, Janani Kalyanam, Josh Klugman, Ella Kuzmenko, Rashmi Gupta. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.