• Clinical science · Sep 2020

    Discovery and characterization of ACE2 - a 20-year journey of surprises from vasopeptidase to COVID-19.

    • Nigel M Hooper, Daniel W Lambert, and Anthony J Turner.
    • Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K.
    • Clin. Sci. 2020 Sep 30; 134 (18): 2489-2501.

    AbstractAngiotensin-converting enzyme (ACE) is a zinc membrane metallopeptidase that plays a key role in regulating vasoactive peptide levels and hence cardiovascular activity through its conversion of angiotensin I (Ang I) to Ang II and its metabolism of bradykinin. The discovery of its homologue, ACE2, 20 years ago has led to intensive comparisons of these two enzymes revealing surprising structural, catalytic and functional distinctions between them. ACE2 plays multiple roles not only as a vasopeptidase but also as a regulator of amino acid transport and serendipitously as a viral receptor, mediating the cellular entry of the coronaviruses causing severe acute respiratory syndrome (SARS) and, very recently, COVID-19. Catalytically, ACE2 functions as a monocarboxypeptidase principally converting the vasoconstrictor angiotensin II to the vasodilatory peptide Ang-(1-7) thereby counterbalancing the action of ACE on the renin-angiotensin system (RAS) and providing a cardioprotective role. Unlike ACE, ACE2 does not metabolise bradykinin nor is it inhibited by classical ACE inhibitors. However, it does convert a number of other regulatory peptides in vitro and in vivo. Interest in ACE2 biology and its potential as a possible therapeutic target has surged in recent months as the COVID-19 pandemic rages worldwide. This review highlights the surprising discoveries of ACE2 biology during the last 20 years, its distinctions from classical ACE and the therapeutic opportunities arising from its multiple biological roles.© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.