-
J. Med. Internet Res. · Feb 2021
Learning From Past Respiratory Infections to Predict COVID-19 Outcomes: Retrospective Study.
- Shengtian Sang, Ran Sun, Jean Coquet, Harris Carmichael, Tina Seto, and Tina Hernandez-Boussard.
- Department of Medicine, Biomedical Informatics, Stanford University, Stanford, CA, United States.
- J. Med. Internet Res. 2021 Feb 22; 23 (2): e23026.
BackgroundFor the clinical care of patients with well-established diseases, randomized trials, literature, and research are supplemented with clinical judgment to understand disease prognosis and inform treatment choices. In the void created by a lack of clinical experience with COVID-19, artificial intelligence (AI) may be an important tool to bolster clinical judgment and decision making. However, a lack of clinical data restricts the design and development of such AI tools, particularly in preparation for an impending crisis or pandemic.ObjectiveThis study aimed to develop and test the feasibility of a "patients-like-me" framework to predict the deterioration of patients with COVID-19 using a retrospective cohort of patients with similar respiratory diseases.MethodsOur framework used COVID-19-like cohorts to design and train AI models that were then validated on the COVID-19 population. The COVID-19-like cohorts included patients diagnosed with bacterial pneumonia, viral pneumonia, unspecified pneumonia, influenza, and acute respiratory distress syndrome (ARDS) at an academic medical center from 2008 to 2019. In total, 15 training cohorts were created using different combinations of the COVID-19-like cohorts with the ARDS cohort for exploratory purposes. In this study, two machine learning models were developed: one to predict invasive mechanical ventilation (IMV) within 48 hours for each hospitalized day, and one to predict all-cause mortality at the time of admission. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value, and negative predictive value. We established model interpretability by calculating SHapley Additive exPlanations (SHAP) scores to identify important features.ResultsCompared to the COVID-19-like cohorts (n=16,509), the patients hospitalized with COVID-19 (n=159) were significantly younger, with a higher proportion of patients of Hispanic ethnicity, a lower proportion of patients with smoking history, and fewer patients with comorbidities (P<.001). Patients with COVID-19 had a lower IMV rate (15.1 versus 23.2, P=.02) and shorter time to IMV (2.9 versus 4.1 days, P<.001) compared to the COVID-19-like patients. In the COVID-19-like training data, the top models achieved excellent performance (AUROC>0.90). Validating in the COVID-19 cohort, the top-performing model for predicting IMV was the XGBoost model (AUROC=0.826) trained on the viral pneumonia cohort. Similarly, the XGBoost model trained on all 4 COVID-19-like cohorts without ARDS achieved the best performance (AUROC=0.928) in predicting mortality. Important predictors included demographic information (age), vital signs (oxygen saturation), and laboratory values (white blood cell count, cardiac troponin, albumin, etc). Our models had class imbalance, which resulted in high negative predictive values and low positive predictive values.ConclusionsWe provided a feasible framework for modeling patient deterioration using existing data and AI technology to address data limitations during the onset of a novel, rapidly changing pandemic.©Shengtian Sang, Ran Sun, Jean Coquet, Harris Carmichael, Tina Seto, Tina Hernandez-Boussard. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.