• Spine · Jul 2013

    Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat.

    • Erkin Sonmez, Serdar Kabatas, Ozlem Ozen, Gulten Karabay, Suna Turkoglu, Ersin Ogus, Cem Yilmaz, Hakan Caner, and Nur Altinors.
    • Department of Neurosurgery, Baskent University School of Medicine, Ankara, Turkey. erkinso@gmail.com
    • Spine. 2013 Jul 1;38(15):1253-9.

    Study DesignA prospective, randomized experimental research.ObjectiveTo evaluate the short- and long-term neuroprotective effects of minocycline on the secondary injury process of an experimental traumatic spinal cord injury (SCI) model.Summary Of Background DataTraumatic SCI is a devastating problem of health that results in high morbidity and mortality rates. The loss of function after SCI results from both the primary mechanical insult and the subsequent, multifaceted secondary response.MethodsA total of 80 adult male Spraque-Dawley rats (breeded by the Baskent University Animal Research Center) were randomly divided into 4 groups. A T10 contusion injury was produced by using modified Allen technique in all groups except the control group. No medication was administered to the rats in the trauma group. Minocycline was administered intraperitoneally and intravenously to the treatment groups. Short-term and/or long-term neuroprotective effects of minocycline on the lipid peroxidation (malondialdehyde, glutathione), apoptosis (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end labeling), ultrastructure of spinal cord (tissue electron microscopy), and behavioral assessments (Basso-Beattie-Bresnahan) were evaluated.ResultsAs compared with the trauma group, tissue malondialdehyde and glutathione levels demonstrated that minocycline significantly diminishes lipid peroxidation. Electromicroscopic study showed that minocycline preserves the ultrastructure of spinal cord tissue in the early post-traumatic period. Minocycline treatment significantly reduced the number of terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end labeling positive cells both 1 day and 28 days after SCI. Behavioral assessments showed significant improvement in the hind limb functions of minocycline receiving rats starting 7 days after the SCI. Any statistically significant difference was not found between intraperitoneal or intravenous routes for minocycline injection.ConclusionMinocycline is neuroprotective and contributes to functional improvement after traumatic SCI by eliminating the destructive process of secondary injury. Having both satisfying anti-inflammatory and antiapoptotic effects in experimental models, it promises to be of therapeutic use in human SCI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…