-
- Samantha C W Chan, Jochen Walser, Stephen J Ferguson, and Benjamin Gantenbein.
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland. samantha.chan@empa.ch.
- Eur Spine J. 2015 Nov 1; 24 (11): 2402-10.
PurposeMechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading.MethodsIntact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz.ResultsNucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group.ConclusionsOur result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.