• Ther Adv Respir Dis · Apr 2016

    Review

    Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches.

    • Meghan Shea, Daniel B Costa, and Deepa Rangachari.
    • Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Boston, MA, USA.
    • Ther Adv Respir Dis. 2016 Apr 1; 10 (2): 113-29.

    AbstractPrecision oncology is now the evidence-based standard of care for the management of many advanced non-small cell lung cancers (NSCLCs). Expert consensus has defined minimum requirements for routine testing and identification of epidermal growth factor (EGFR) mutations (15% of tumors harbor EGFR exon 19 deletions or exon 21 L858R substitutions) and anaplastic lymphoma kinase (ALK) rearrangements (5% of tumors) in advanced lung adenocarcinomas (ACs). Application of palliative targeted therapies with oral tyrosine kinase inhibitors (TKIs) in advanced/metastatic lung ACs harboring abnormalities in EGFR (gefitinib, erlotinib, afatinib) and ALK/ROS1/MET (crizotinib) has consistently led to more favorable outcomes compared with traditional cytotoxic agents. In addition, mutations leading to resistance to first-line EGFR and ALK TKIs can now be successfully inhibited by soon to be approved third-generation EGFR TKIs (osimertinib, rociletinib) and second-generation ALK TKIs (ceritinib, alectinib). Notably, increasing feasibility, accessibility, and application of molecular profiling technologies has permitted dynamic growth in the identification of actionable driver oncogenes. Emerging genomic aberrations for which TKIs have shown impressive results in clinical trials and expansion of drug labels for approved agents are awaited include ROS1 rearrangements (1-2% of tumors, drug: crizotinib) and BRAF-V600E mutations (1-3% of tumors, drugs: vemurafenib, dafrafenib + trametinib). Evolving genomic events in which TKI responses have been reported in smaller series include MET exon 14 skipping mutations (2-4% of tumors, drug: crizotinib); high-level MET amplification (1-2% of tumors, drug: crizotinib); RET rearrangements (1% of tumors, drug: cabozantinib); and ERBB2 mutations (2-3% of tumors, drug: afatinib), among others. Unfortunately, the most common genomic event in NSCLC, KRAS mutations (25-30% of tumors), is not targetable with approved or in development small molecule inhibitors. Here, we review currently approved, emerging, and evolving systemic precision therapies matched with their driver oncogenes for the management of advanced NSCLC. © The Author(s), 2015.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.