• Spine · May 2013

    Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device.

    • Hans-Joachim Wilke, Lena Ressel, Frank Heuer, Nicolas Graf, and Stefan Rath.
    • Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany. hans-joachim.wilke@uni-ulm.de
    • Spine. 2013 May 1;38(10):E587-93.

    Study DesignBiomechanical in vitro study.ObjectiveTo establish a reliable in vitro herniation model with human cadaver spines that enables evaluation of anular closure devices.Summary Of Background DataBiomechanically, it is desirable to close anulus defects after disc herniation to preserve as much nucleus as possible. Multiple anular closure options exist to prevent reherniation. A reliable test procedure is needed to evaluate the efficacy and reliability of these implants.MethodsTwo groups of human lumbar segments (n = 6 per group) were tested under cyclic loading until herniation occurred or 100,000 load cycles were applied. One group contained moderate/severe degenerated discs. A second group had mild degenerated discs. Intradiscal pressure was measured in the intact state to confirm disc quality.If herniation occurred, the extruded material was reinserted into the disc and the anulus defect was treated with the Barricaid anular closure device (Intrinsic Therapeutics, Inc., Woburn, MA). Disc height and 3-dimensional flexibility of the specimens in the intact, defect, and implanted states were measured under pure moments in each principal motion plane. Afterwards, provocation of reherniation was attempted with additional 100,000 load cycles.ResultsLikelihood of herniation was strongly linked to disc degeneration and supported by the magnitude of intradiscal pressure. In moderate/severe degenerated discs, only 1 herniation was created. In mild degenerated discs, herniations were reliably created in all specimens. Using this worst-case model, herniation caused a significant reduction of disc height, which was nearly restored with the implant. In no case was reherniation or implant migration visible after 100,000 load cycles after Barricaid implantation.ConclusionWe established a human herniation model that reliably produced nucleus extrusion during cyclic loading by selecting specimens with low disc degeneration. The Barricaid seems to prevent nucleus from reherniating. The reliability of this method suggests the opportunity to investigate other anulus closure devices and nucleus replacement techniques critically.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.