-
- Lars Arendt-Nielsen, LarsenJesper BieJBTranslational Pain Biomarkers, CNAP and Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Fredrik Bajers Vej 7, Bld. D3, DK-9220 Aalborg East, Denmark.Sports , Stine Rasmussen, Malene Krogh, Laura Borg, and Pascal Madeleine.
- Translational Pain Biomarkers, CNAP and Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Fredrik Bajers Vej 7, Bld. D3, DK-9220 Aalborg East, Denmark.
- Scand J Pain. 2020 Oct 25; 20 (4): 801-807.
AbstractBackground and aims In recent years, focus on assessing descending pain modulation or conditioning pain modulation (CPM) has emerged in patients with chronic pain. This requires reliable and simple to use bed-side tools to be applied in the clinic. The aim of the present pilot study was to develop and provide proof-of-concept of a simple clinically applicable bed-side tool for assessing CPM. Methods A group of 26 healthy volunteers participated in the experiment. Pressure pain thresholds (PPT) were assessed as test stimuli from the lower leg before, during and 5 min after delivering the conditioning tonic painful pressure stimulation. The tonic stimulus was delivered for 2 min by a custom-made spring-loaded finger pressure device applying a fixed pressure (2.2 kg) to the index finger nail. The pain intensity provoked by the tonic stimulus was continuously recorded on a 0-10 cm Visual Analog Scale (VAS). Results The median tonic pain stimulus intensity was 6.7 cm (interquartile range: 4.6-8.4 cm) on the 10 cm VAS. The mean PPT increased significantly (P = 0.034) by 55 ± 126 kPa from 518 ± 173 kPa before to 573 ± 228 kPa during conditioning stimulation. When analyzing the individual CPM responses (increases in PPT), a distribution of positive and negative CPM responders was observed with 69% of the individuals classified as positive CPM responders (increased PPTs = anti-nociceptive) and the rest as negative CPM responders (no or decreased PPTs = Pro-nociceptive). This particular responder distribution explains the large variation in the averaged CPM responses observed in many CPM studies. The strongest positive CPM response was an increase of 418 kPa and the strongest negative CPM response was a decrease of 140 kPa. Conclusions The present newly developed conditioning pain stimulator provides a simple, applicable tool for routine CPM assessment in clinical practice. Further, reporting averaged CPM effects should be replaced by categorizing volunteers/patients into anti-nociceptive and pro-nociceptive CPM groups. Implications The finger pressure device provided moderate-to-high pain intensities and was useful for inducing conditioning stimuli. Therefore, the finger pressure device could be a useful bed-side method for measuring CPM in clinical settings with limited time available. Future bed-side studies involving patient populations are warranted to determine the usefulness of the method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.