• Radiology · Oct 2019

    Comparative Study

    Digital Mammography versus Breast Tomosynthesis: Impact of Breast Density on Diagnostic Performance in Population-based Screening.

    • Bjørn Helge Østerås, Anne Catrine T Martinsen, Randi Gullien, and Per Skaane.
    • From the Department of Diagnostic Physics (B.H.Ø., A.C.T.M.) and Division of Radiology and Nuclear Medicine (R.G., P.S.), Oslo University Hospital, Building 20, Gaustad, PO Box 4959, Nydalen, 0424 Oslo, Norway; and Institute of Clinical Medicine (B.H.Ø., P.S.) and Department of Physics (A.C.T.M.), University of Oslo, Oslo, Norway.
    • Radiology. 2019 Oct 1; 293 (1): 60-68.

    AbstractBackgroundPrevious studies comparing digital breast tomosynthesis (DBT) to digital mammography (DM) have shown conflicting results regarding breast density and diagnostic performance.PurposeTo compare true-positive and false-positive interpretations in DM versus DBT according to volumetric density, age, and mammographic findings.Materials and MethodsFrom November 2010 to December 2012, 24 301 women aged 50-69 years (mean age, 59.1 years ± 5.7) were prospectively included in the Oslo Tomosynthesis Screening Trial. Participants received same-compression DM and DBT with independent double reading for both DM and DM plus DBT reading modes. Eight experienced radiologists rated the images by using a five-point scale for probability of malignancy. Participants were followed up for 2 years to assess for interval cancers. Breast density was assessed by using automatic volumetric software (scale, 1-4). Differences in true-positive rates, false-positive rates, and mammographic findings were assessed by using confidence intervals (Newcombe paired method) and P values (McNemar and χ2 tests).ResultsThe true-positive rate of DBT was higher than that of DM for density groups (range, 12%-24%; P < .001 for density scores of 2 and 3, and P > .05 for density scores of 1 and 4) and age groups (range, 15%-35%; P < .05 for all age groups), mainly due to the higher number of spiculated masses and architectural distortions found at DBT (P < .001 for density scores of 2 and 3; P < .05 for women aged 55-69 years). The false-positive rate was lower for DBT than for DM in all age groups (range, -0.6% to -1.2%; P < .01) and density groups (range, -0.7 to -1.0%; P < .005) owing to fewer asymmetric densities (P ≤ .001), except for extremely dense breasts (0.1%, P = .82).ConclusionDigital breast tomosynthesis enabled the detection of more cancers in all density and age groups compared with digital mammography, especially cancers classified as spiculated masses and architectural distortions. The improvement in cancer detection rate showed a positive correlation with age. With use of digital breast tomosynthesis, false-positive findings were lower due to fewer asymmetric densities, except in extremely dense breasts.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Fuchsjäger and Adelsmayr in this issue.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…