• Resuscitation · May 2021

    Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest.

    • Jamal Chu, K H Benjamin Leung, Paul Snobelen, Gordon Nevils, Ian R Drennan, Sheldon Cheskes, and ChanTimothy C YTCYDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada. Electronic address: tcychan@mie.utoronto.ca..
    • Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
    • Resuscitation. 2021 May 1; 162: 120-127.

    BackgroundDrone-delivered defibrillators have the potential to significantly reduce response time for out-of-hospital cardiac arrest (OHCA). However, optimal policies for the dispatch of such drones are not yet known. We sought to develop dispatch rules for a network of defibrillator-carrying drones.MethodsWe identified all suspected OHCAs in Peel Region, Ontario, Canada from Jan. 2015 to Dec. 2019. We developed drone dispatch rules based on the difference between a predicted ambulance response time to a calculated drone response time for each OHCA. Ambulance response times were predicted using linear regression and neural network models, while drone response times were calculated using drone specifications from recent pilot studies and the literature. We evaluated the dispatch rules based on response time performance and dispatch decisions, comparing them to two baseline policies of never dispatching and always dispatching drones.ResultsA total of 3573 suspected OHCAs were included in the study with median and mean historical ambulance response times of 5.8 and 6.2 min. All machine learning-based dispatch rules significantly reduced the median response time to 3.9 min and mean response time to 4.1-4.2 min (all P < 0.001) and were non-inferior to universally dispatching drones (all P < 0.001) while reducing the number of drone flights by up to 30%. Dispatch rules with more drone flights achieved higher sensitivity but lower specificity and accuracy.ConclusionMachine learning-based dispatch rules for drone-delivered defibrillators can achieve similar response time reductions as universal drone dispatch while substantially reducing the number of trips.Copyright © 2021 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…