• Shock · Nov 2021

    Air-Evacuation-Relevant Hypobaria Following Traumatic Brain Injury Plus Hemorrhagic Shock in Rats Increases Mortality and Injury To The Gut, Lungs and Kidneys.

    • Julie L Proctor, Juliana Medina, Parisa Rangghran, Pratistha Tamrakar, Catriona Miller, Adam Puche, Wei Quan, Turhan Coksaygan, Cinthia B Drachenberg, Robert E Rosenthal, Deborah M Stein, Rosemary Kozar, Feng Wu, and Gary Fiskum.
    • Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland.
    • Shock. 2021 Nov 1; 56 (5): 793802793-802.

    AbstractRats exposed to hypobaria equivalent to what occurs during aeromedical evacuation within a few days after isolated traumatic brain injury exhibit greater neurologic injury than those remaining at sea level. Moreover, administration of excessive supplemental O2 during hypobaria further exacerbates brain injury. This study tested the hypothesis that exposure of rats to hypobaria following controlled cortical impact (CCI)-induced brain injury plus mild hemorrhagic shock worsens multiple organ inflammation and associated mortality. In this study, at 24 h after CCI plus hemorrhagic shock, rats were exposed to either normobaria (sea level) or hypobaria (=8,000 ft altitude) for 6 h under normoxic or hyperoxic conditions. Injured rats exhibited mortality ranging from 30% for those maintained under normobaria and normoxia to 60% for those exposed to 6 h under hypobaric and hyperoxia. Lung histopathology and neutrophil infiltration at 2 days postinjury were exacerbated by hypobaria and hyperoxia. Gut and kidney inflammation at 30 days postinjury were also worsened by hypobaric hyperoxia. In conclusion, exposure of rats after brain injury and hemorrhagic shock to hypobaria or hyperoxia results in increased mortality. Based on gut, lung, and kidney histopathology at 2 to 30 days postinjury, increased mortality is consistent with multi-organ inflammation. These findings support epidemiological studies indicating that increasing aircraft cabin pressures to 4,000 ft altitude (compared with standard 8,000 ft) and limiting excessive oxygen administration will decrease critical complications during and following aeromedical transport.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.