-
- Rodrigo Octávio Deliberato, Guilherme Goto Escudero, Lucas Bulgarelli, Neto Ary Serpa AS Laboratory for Critical Care Research, Critical Care Department, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Intensive Care, Ac, Stephanie Q Ko, Niklas Soderberg Campos, Berke Saat, Edson Amaro, Fabio Silva Lopes, and Alistair Ew Johnson.
- Big Data Analytics Department, Hospital Israelita Albert Einstein, São Paulo, Brazil; Laboratory for Critical Care Research, Critical Care Department, Hospital Israelita Albert Einstein, São Paulo, Brazil; MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, USA. Electronic address: rodrigo2@mit.edu.
- Int J Med Inform. 2019 Nov 1; 131: 103959.
ObjectiveSeverity of illness scores used in critical care for benchmarking, quality assurance and risk stratification have been mainly created in high-income countries. In low and middle-income countries (LMICs), they cannot be widely utilized due to the demand for large amounts of data that may not be available (e.g. laboratory results). We attempt to create a new severity prognostication model using fewer variables that are easier to collect in an LMIC.SettingTwo intensive care units, one private and one public, from São Paulo, Brazil PATIENTS: An ICU for the first time.InterventionsNone.Measurements And Mains ResultsThe dataset from the private ICU was used as a training set for model development to predict in-hospital mortality. Three different machine learning models were applied to five different blocks of candidate variables. The resulting 15 models were then validated on a separate dataset from the public ICU, and discrimination and calibration compared to identify the best model. The best performing model used logistic regression on a small set of 10 variables: highest respiratory rate, lowest systolic blood pressure, highest body temperature and Glasgow Coma Scale during the first hour of ICU admission; age; prior functional capacity; type of ICU admission; source of ICU admission; and length of hospital stay prior to ICU admission. On the validation dataset, our new score, named SEVERITAS, had an area under the receiver operating curve of 0.84 (0.82 - 0.86) and standardized mortality ratio of 1.00 (0.91-1.08). Moreover, SEVERITAS had similar discrimination compared to SAPS-3 and better discrimination than the simplified TropICS and R-MPM.ConclusionsOur study proposes a new ICU mortality prediction model using simple logistic regression on a small set of easily collected variables may be better suited than currently available models for use in low and middle-income countries.Copyright © 2019 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.