• Am. J. Physiol. Renal Physiol. · Oct 2019

    Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy.

    • Yuan-Yuan Yang, Dao-Jing Gong, Jian-Jian Zhang, Xiu-Heng Liu, and Lei Wang.
    • Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
    • Am. J. Physiol. Renal Physiol. 2019 Oct 1; 317 (4): F852-F864.

    AbstractDiabetes could aggravate ischemia-reperfusion (I/R) injury, but the underlying mechanism is unclear. In the present study, we aimed to investigate whether diabetes exacerbates renal I/R injury and its possible mechanism. In vitro, HK-2 cells under normal or high glucose conditions were subjected to hypoxia (12 h) followed by reoxygenation (3 h) (H/R). Cell viability, intracellular ATP content, mitochondrial membrane potential, reactive oxygen species production, and apoptosis were measured. In vivo, streptozotocin-induced diabetic and nondiabetic rats were subjected to I/R. Renal pathology, function, and apoptosis were evaluated by hematoxylin and eosin staining, transmission electron microscopy, and Western blot analysis. Compared with the normal glucose + H/R group, mitochondrial function (ATP, mitochondrial membrane potential, and reactive oxygen species) and mitophagy were reduced in the high glucose + H/R group, as was expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin. Also, cells in the high glucose + H/R group exhibited more apoptosis compared with the normal glucose + H/R group, as assessed by flow cytometry, TUNEL staining, and Western blot analysis. Compared with normal rats that underwent I/R, diabetic rats that underwent I/R exhibited more severe tubular damage and renal dysfunction as well as expression of the apoptotic protein caspase-3. Meanwhile, diabetes alleviated mitophagy-associated protein expression in rats subjected to I/R, including expression of PINK1 and Parkin. Transmission electron microscopy indicated that the mitophagosome could be hardly observed and that mitochondrial morphology and structure were obviously damaged in the diabetes + I/R group. In conclusion, our results, for the first time, indicate that diabetes could aggravate I/R injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy in vivo and in vitro.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…