• Experimental neurology · Dec 2016

    A new model of nerve injury in the rat reveals a role of Regulator of G protein Signaling 4 in tactile hypersensitivity.

    • Giuliano Taccola, Pierre J Doyen, Jonathan Damblon, Nejada Dingu, Beatrice Ballarin, Arnaud Steyaert, Rieux Anne des AD Louvain Drug Research Institute, Av. Mounier 73, Brussels and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Lou, Patrice Forget, Emmanuel Hermans, Barbara Bosier, and Ronald Deumens.
    • Institute of Neuroscience, Université catholique de Louvain, Av. Hippocrate 54, Brussels, Belgium; Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, TS, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48, Udine (UD), Italy.
    • Exp. Neurol. 2016 Dec 1; 286: 1-11.

    AbstractTactile hypersensitivity is one of the most debilitating symptoms of neuropathic pain syndromes. Clinical studies have suggested that its presence at early postoperative stages may predict chronic (neuropathic) pain after surgery. Currently available animal models are typically associated with consistent tactile hypersensitivity and are therefore limited to distinguish between mechanisms that underlie tactile hypersensitivity as opposed to mechanisms that protect against it. In this study we have modified the rat model of spared nerve injury, restricting the surgical lesion to a single peripheral branch of the sciatic nerve. This modification reduced the prevalence of tactile hypersensitivity from nearly 100% to approximately 50%. With this model, we here also demonstrated that the Regulator of G protein Signaling 4 (RGS4) was specifically up-regulated in the lumbar dorsal root ganglia and dorsal horn of rats developing tactile hypersensitivity. Intrathecal delivery of the RGS4 inhibitor CCG63802 was found to reverse tactile hypersensitivity for a 1h period. Moreover, tactile hypersensitivity after modified spared nerve injury was most frequently persistent for at least four weeks and associated with higher reactivity of glial cells in the lumbar dorsal horn. Based on these data we suggest that this new animal model of nerve injury represents an asset in understanding divergent neuropathic pain outcomes, so far unravelling a role of RGS4 in tactile hypersensitivity. Whether this model also holds promise in the study of the transition from acute to chronic pain will have to be seen in future investigations.Copyright © 2016. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.