-
- Saqib A Rahman, Robert C Walker, Nick Maynard, Nigel Trudgill, Tom Crosby, David A Cromwell, Timothy J Underwood, and NOGCA project team AUGIS.
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Ann. Surg. 2023 Feb 1; 277 (2): 267274267-274.
ObjectiveThe aim of this study was to develop a predictive model for overall survival after esophagectomy using pre/postoperative clinical data and machine learning.Summary Background DataFor patients with esophageal cancer, accurately predicting long-term survival after esophagectomy is challenging. This study investigated survival prediction after esophagectomy using a RandomSurvival Forest (RSF) model derived from routine data from a large, well-curated, national dataset.MethodsPatients diagnosed with esophageal adenocarcinoma or squamous cell carcinoma between 2012 and 2018 in England and Wales who underwent an esophagectomy were included. Prediction models for overall survival were developed using the RSF method and Cox regression from 41 patient and disease characteristics. Calibration and discrimination (time-dependent area under the curve) were validated internally using bootstrap resampling.ResultsThe study analyzed 6399 patients, with 2625 deaths during follow-up. Median follow-up was 41 months. Overall survival was 47.1% at 5 years. The final RSF model included 14 variables and had excellent discrimination with a 5-year time-dependent area under the receiver operator curve of 83.9% [95% confidence interval (CI) 82.6%-84.9%], compared to 82.3% (95% CI 81.1%-83.3%) for the Cox model. The most important variables were lymph node involvement, pT stage, circumferential resection margin involvement (tumor at < 1 mm from cut edge) and age. There was a wide range of survival estimates even within TNM staging groups, with quintiles of prediction within Stage 3b ranging from 12.2% to 44.7% survival at 5 years.ConclusionsAn RSF model for long-term survival after esophagectomy exhibited excellent discrimination and well-calibrated predictions. At a patient level, it provides more accuracy than TNM staging alone and could help in the delivery of tailored treatment and follow-up.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.