-
- Jonathan J Rasouli, Jianning Shao, Sean Neifert, Wende N Gibbs, Ghaith Habboub, Michael P Steinmetz, Edward Benzel, and Thomas E Mroz.
- 2569Cleveland Clinic, Cleveland, OH, USA.
- Global Spine J. 2021 May 1; 11 (4): 556-564.
Study DesignNarrative review.ObjectivesArtificial intelligence (AI) and machine learning (ML) have emerged as disruptive technologies with the potential to drastically affect clinical decision making in spine surgery. AI can enhance the delivery of spine care in several arenas: (1) preoperative patient workup, patient selection, and outcome prediction; (2) quality and reproducibility of spine research; (3) perioperative surgical assistance and data tracking optimization; and (4) intraoperative surgical performance. The purpose of this narrative review is to concisely assemble, analyze, and discuss current trends and applications of AI and ML in conventional and robotic-assisted spine surgery.MethodsWe conducted a comprehensive PubMed search of peer-reviewed articles that were published between 2006 and 2019 examining AI, ML, and robotics in spine surgery. Key findings were then compiled and summarized in this review.ResultsThe majority of the published AI literature in spine surgery has focused on predictive analytics and supervised image recognition for radiographic diagnosis. Several investigators have studied the use of AI/ML in the perioperative setting in small patient cohorts; pivotal trials are still pending.ConclusionsArtificial intelligence has tremendous potential in revolutionizing comprehensive spine care. Evidence-based, predictive analytics can help surgeons improve preoperative patient selection, surgical indications, and individualized postoperative care. Robotic-assisted surgery, while still in early stages of development, has the potential to reduce surgeon fatigue and improve technical precision.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.