• Clin. Microbiol. Infect. · Oct 2020

    Review

    Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies.

    • C F Luz, M Vollmer, J Decruyenaere, M W Nijsten, C Glasner, and B Sinha.
    • University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands. Electronic address: c.f.luz@umcg.nl.
    • Clin. Microbiol. Infect. 2020 Oct 1; 26 (10): 1291-1299.

    BackgroundMachine learning (ML) is increasingly being used in many areas of health care. Its use in infection management is catching up as identified in a recent review in this journal. We present here a complementary review to this work.ObjectivesTo support clinicians and researchers in navigating through the methodological aspects of ML approaches in the field of infection management.SourcesA Medline search was performed with the keywords artificial intelligence, machine learning, infection∗, and infectious disease∗ for the years 2014-2019. Studies using routinely available electronic hospital record data from an inpatient setting with a focus on bacterial and fungal infections were included.ContentFifty-two studies were included and divided into six groups based on their focus. These studies covered detection/prediction of sepsis (n = 19), hospital-acquired infections (n = 11), surgical site infections and other postoperative infections (n = 11), microbiological test results (n = 4), infections in general (n = 2), musculoskeletal infections (n = 2), and other topics (urinary tract infections, deep fungal infections, antimicrobial prescriptions; n = 1 each). In total, 35 different ML techniques were used. Logistic regression was applied in 18 studies followed by random forest, support vector machines, and artificial neural networks in 18, 12, and seven studies, respectively. Overall, the studies were very heterogeneous in their approach and their reporting. Detailed information on data handling and software code was often missing. Validation on new datasets and/or in other institutions was rarely done. Clinical studies on the impact of ML in infection management were lacking.ImplicationsPromising approaches for ML use in infectious diseases were identified. But building trust in these new technologies will require improved reporting. Explainability and interpretability of the models used were rarely addressed and should be further explored. Independent model validation and clinical studies evaluating the added value of ML approaches are needed.Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…