• Respiratory care · May 2021

    Inspiratory Pressure Rise Time, Ventilator Hardware, and Software Influence Regional Ventilation in a Simulated Bronchopulmonary Dysplasia Lung Model.

    • Ibrahim A Sammour and Robert L Chatburn.
    • Cleveland Clinic, Cleveland, Ohio. sammoui@ccf.org.
    • Respir Care. 2021 May 1; 66 (5): 751757751-757.

    BackgroundBronchopulmonary dysplasia (BPD) is a heterogeneous disease that poses a challenge when ventilating premature infants. The purpose of this study was to determine how inspiratory pressure rise time (IRT), different ventilators, and their software updates affect the balance of ventilation among 2 heterogeneous lung units.MethodsA passive dual-chamber lung model was constructed using the IngMar ASL5000 to approximate moderate BPD. One chamber had a short time constant, and the other had a long time constant. Three ventilators were used to provide pressure control intermittent mandatory ventilation: the Servo-i, an Avea ventilator with the volume guarantee software update, and an Avea ventilator without the volume guarantee software update. Using the same settings for pressure control intermittent mandatory ventilation, the IRT was adjusted between minimum and maximum settings. Data from 100 consecutive breaths/IRT were obtained. Inspiration time to 90% of plateau pressure was used as a surrogate for IRT; this was defined as the time needed to achieve a pressure of 18 cm H2O at the simulated trachea and was measured in 5 random breaths using ImageJ for each ventilator at each IRT. Outcome variables were tidal volume, peak inspiratory flow, mean inspiratory pressure, and volume balance (%) defined as the difference in chamber tidal volumes divided by total tidal volume. Linear regression was used to assess the impact of the IRT and ventilators on the different variables.ResultsIn this model, increasing IRT decreased peak inspiratory flow, mean inspiratory pressure, chamber-specific tidal volume, and volume balance. Furthermore, different ventilator hardware and software influenced the waveforms in pressure control intermittent mandatory ventilation, which independently affected the measured variables.ConclusionsIn a lung model of BPD with 2 very heterogeneous lung units, prolonging IRT without any volume balancing measures improved volume balance between the chambers at the expense of total tidal volume. Furthermore, the different ventilators acted as independent factors from the measured inspiration time to 90% of plateau pressure.Copyright © 2021 by Daedalus Enterprises.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.