• Chest · Jul 2021

    Recommended approaches to minimize aerosol dispersion of SARS-CoV2 during noninvasive ventilatory support can deteriorate ventilator performances: a benchmark comparative study.

    • Maxime Patout, Emeline Fresnel, Manuel Lujan, Claudio Rabec, Annalisa Carlucci, Léa Razakamanantsoa, Adrien Kerfourn, Hilario Nunes, Yacine Tandjaoui-Lambiotte, Antoine Cuvelier, Jean-François Muir, Cristina Lalmoda, Bruno Langevin, Javier Sayas, Jesus Gonzalez-Bermejo, Jean-Paul Janssens, and SomnoNIV Group.
    • AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département R3S), F-75013 Paris, France; Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; Respiratory Department, Avicenne Hospital, AP-HP, Bobigny, France; Normandie University, UNIRouen, EA3830-GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. Electronic address: maxime.patout@aphp.fr.
    • Chest. 2021 Jul 1; 160 (1): 175186175-186.

    BackgroundSARS-CoV-2 aerosolization during noninvasive positive-pressure ventilation may endanger health care professionals. Various circuit setups have been described to reduce virus aerosolization. However, these setups may alter ventilator performance.Research QuestionWhat are the consequences of the various suggested circuit setups on ventilator efficacy during CPAP and noninvasive ventilation (NIV)?Study Design And MethodsEight circuit setups were evaluated on a bench test model that consisted of a three-dimensional printed head and an artificial lung. Setups included a dual-limb circuit with an oronasal mask, a dual-limb circuit with a helmet interface, a single-limb circuit with a passive exhalation valve, three single-limb circuits with custom-made additional leaks, and two single-limb circuits with active exhalation valves. All setups were evaluated during NIV and CPAP. The following variables were recorded: the inspiratory flow preceding triggering of the ventilator, the inspiratory effort required to trigger the ventilator, the triggering delay, the maximal inspiratory pressure delivered by the ventilator, the tidal volume generated to the artificial lung, the total work of breathing, and the pressure-time product needed to trigger the ventilator.ResultsWith NIV, the type of circuit setup had a significant impact on inspiratory flow preceding triggering of the ventilator (P < .0001), the inspiratory effort required to trigger the ventilator (P < .0001), the triggering delay (P < .0001), the maximal inspiratory pressure (P < .0001), the tidal volume (P = .0008), the work of breathing (P < .0001), and the pressure-time product needed to trigger the ventilator (P < .0001). Similar differences and consequences were seen with CPAP as well as with the addition of bacterial filters. Best performance was achieved with a dual-limb circuit with an oronasal mask. Worst performance was achieved with a dual-limb circuit with a helmet interface.InterpretationVentilator performance is significantly impacted by the circuit setup. A dual-limb circuit with oronasal mask should be used preferentially.Copyright © 2021 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…