-
Comparative Study
Comparison of Static and Dynamic 18F-FDG PET/CT for Quantification of Pulmonary Inflammation in Acute Lung Injury.
- Anja Braune, Frank Hofheinz, Thomas Bluth, Thomas Kiss, Jakob Wittenstein, Martin Scharffenberg, Jörg Kotzerke, and Gama de Abreu Marcelo M Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at the Technische Uni.
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany anja.braune@uniklinikum-dresden.de.
- J. Nucl. Med. 2019 Nov 1; 60 (11): 1629-1634.
AbstractPET imaging with 18F-FDG followed by mathematic modeling of the pulmonary uptake rate (Ki) is the gold standard for assessment of pulmonary inflammation in experimental studies of acute respiratory distress syndrome (ARDS). However, dynamic PET requires long imaging and allows the assessment of only 1 cranio-caudal field of view (∼15 cm). We investigated whether static 18F-FDG PET/CT and analysis of SUV or standardized uptake ratios (SURstat, uptake time-corrected ratio of 18F-FDG concentration in lung tissue and blood plasma) might be an alternative to dynamic 18F-FDG PET/CT and Patlak analysis for quantification of pulmonary inflammation in experimental ARDS. Methods: ARDS was induced by saline lung lavage followed by injurious mechanical ventilation in 14 anesthetized pigs (29.5-40.0 kg). PET/CT imaging sequences were acquired before and after 24 h of mechanical ventilation. Ki and the apparent volume of distribution were calculated from dynamic 18F-FDG PET/CT scans using the Patlak analysis. Static 18F-FDG PET/CT scans were obtained immediately after dynamic PET/CT and used for calculations of SUV and SURstat Mean Ki values of the whole imaged field of view and of 5 ventro-dorsal lung regions were compared with corresponding SUV and SURstat values, respectively, by means of linear regression and concordance analysis. The variability of the 18F-FDG concentration in blood plasma (arterial input function) was analyzed. Results: Both for the whole imaged field of view and ventro-dorsal subregions, Ki was linearly correlated with SURstat (r2 ≥ 0.84), whereas Ki-SUV correlations were worse (r2 ≤ 0.75). The arterial input function exhibited an essentially invariant shape across all animals and time points and can be described by an inverse power law. Compared with Ki, SURstat and SUV tracked the same direction of change in regional lung inflammation in 98.6% and 84.3% of measurements, respectively. Conclusion: The Ki-SURstat correlations were considerably stronger than the Ki-SUV correlations. The good Ki-SURstat correlations suggest that static 18F-FDG PET/CT and SURstat analysis provides an alternative to dynamic 18F-FDG PET/CT and Patlak analysis, allowing the assessment of inflammation of whole lungs, repeated measurements within the period of 18F-FDG decay, and faster data acquisition.© 2019 by the Society of Nuclear Medicine and Molecular Imaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.