-
- Stephan Strassmann, Michaela Merten, Simone Schäfer, Jonas de Moll, Daniel Brodie, Anders Larsson, Wolfram Windisch, and Christian Karagiannidis.
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
- Intensive Care Med Exp. 2019 Mar 25; 7 (1): 17.
BackgroundVeno-venous extracorporeal carbon dioxide (CO2) removal (vv-ECCO2R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates range in clinical practice from 200 mL/min to more than 1500 mL/min, and sweep gas flow rates range from less than 1 to more than 10 L/min. The present porcine model study was aimed at determining the impact of varying sweep gas flow rates on CO2 removal under different blood flow conditions and membrane lung surface areas.MethodsTwo different membrane lungs, with surface areas of 0.4 and 0.8m2, were used in nine pigs with experimentally-induced hypercapnia. During each experiment, the blood flow was increased stepwise from 300 to 900 mL/min, with further increases up to 1800 mL/min with the larger membrane lung in steps of 300 mL/min. Sweep gas was titrated under each condition from 2 to 8 L/min in steps of 2 L/min. Extracorporeal CO2 elimination was normalized to a PaCO2 of 45 mmHg before the membrane lung.ResultsReversal of hypercapnia was only feasible when blood flow rates above 900 mL/min were used with a membrane lung surface area of at least 0.8m2. The membrane lung with a surface of 0.4m2 allowed a maximum normalized CO2 elimination rate of 41 ± 6 mL/min with 8 L/min sweep gas flow and 900 mL blood flow/min. The increase in sweep gas flow from 2 to 8 L/min increased normalized CO2 elimination from 35 ± 5 to 41 ± 6 with 900 mL blood flow/min, whereas with lower blood flow rates, any increase was less effective, levelling out at 4 L sweep gas flow/min. The membrane lung with a surface area of 0.8m2 allowed a maximum normalized CO2 elimination rate of 101 ± 12 mL/min with increasing influence of sweep gas flow. The delta of normalized CO2 elimination increased from 4 ± 2 to 26 ± 7 mL/min with blood flow rates being increased from 300 to 1800 mL/min, respectively.ConclusionsThe influence of sweep gas flow on the CO2 removal capacity of ECCO2R systems depends predominantly on blood flow rate and membrane lung surface area. In this model, considerable CO2 removal occurred only with the larger membrane lung surface of 0.8m2 and when blood flow rates of ≥ 900 mL/min were used.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.