• Spine · Oct 2013

    Posteriorly directed shear loads and disc degeneration affect the torsional stiffness of spinal motion segments: a biomechanical modeling study.

    • Jasper Homminga, Anne M Lehr, Gerdine J M Meijer, Michiel M A Janssen, Tom P C Schlösser, Gijsbertus J Verkerke, and René M Castelein.
    • *Laboratory for Biomechanical Engineering, University of Twente, Enschede, the Netherlands †Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands; and ‡Department of Biomedical Engineering, University Medical Center Groningen, Groningen, the Netherlands.
    • Spine. 2013 Oct 1;38(21):E1313-9.

    Study DesignFinite element study.ObjectiveTo analyze the effects of posterior shear loads, disc degeneration, and the combination of both on spinal torsion stiffness.Summary Of Background DataScoliosis is a 3-dimensional deformity of the spine that presents itself mainly in adolescent girls and elderly patients. Our concept of its etiopathogenesis is that an excess of posteriorly directed shear loads, relative to the body's intrinsic stabilizing mechanisms, induces a torsional instability of the spine, making it vulnerable to scoliosis. Our hypothesis for the elderly spine is that disc degeneration compromises the stabilizing mechanisms.MethodsIn an adult lumbar motion segment model, the disc properties were varied to simulate different aspects of disc degeneration. These models were then loaded with a pure torsion moment in combination with either a shear load in posterior direction, no shear, or a shear load in anterior direction.ResultsPosteriorly directed shear loads reduced torsion stiffness, anteriorly directed shear loads increased torsion stiffness. These effects were mainly caused by a later (respectively earlier) onset of facet joint contact. Disc degeneration cases with a decreased disc height that leads to slackness of the annular fibers and ligaments caused a significantly decreased torsional stiffness. The combination of this stage with posterior shear loading reduced the torsion stiffness to less than half the stiffness of a healthy disc without shear loads. The end stage of disc degeneration increased torsion stiffness again.ConclusionThe combination of a decreased disc height, that leads to slack annular fibers and ligaments, and posterior shear loads very significantly affects torsional stiffness: reduced to less than half the stiffness of a healthy disc without shear loads. Disc degeneration, thus, indeed compromises the stabilizing mechanisms of the elderly spine. A combination with posteriorly directed shear loads could then make it vulnerable to scoliosis.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.