-
- Daphne Guenoun, Thomas Le Corroller, Souad Acid, Martine Pithioux, Vanessa Pauly, Damien Ariey-Bonnet, Patrick Chabrand, and Pierre Champsaur.
- *APHM, Hôpital Sainte Marguerite, Radiology Department, Marseille, France †Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France Marseille, France; and ‡Aix-Marseille Université, Laboratoire de Santé Publique EA 3279, Marseille, France, Department of Public Health, APHM, Marseille, France.
- Spine. 2013 Oct 1;38(21):E1320-6.
Study DesignCompression biomechanical tests using fresh cadaveric thoracolumbar motion segments.ObjectiveThe purpose of this study was to determine if the combination of bone texture parameters using bone microarchitecture, and bone mineral density (BMD) measurement by dual-energy x-ray absorptiometry provided a better prediction of vertebral fracture than BMD evaluation alone.Summary Of Background DataBone strength is routinely evaluated using BMD, as measured by dual-energy x-ray absorptiometry. Currently, there is an ongoing debate about the strengths and limitations of bone densitometry in clinical practice. To assess the fracture risk properly, other factors are important to be taken into account such as the macro- and microarchitecture of the bone. Recently, a new high-resolution x-ray device with direct digitization, named bone microarchitecture (BMA, D3A Medical Systems), has been developed to provide a better precision of texture parameters than those previously obtained on digitized films.MethodsTwenty-seven 3-level thoracolumbar motion segments (T11, T12, L1, and L2, L3, L4) of excised spines, obtained at the Anatomy Department of Marseille, were studied using bone microarchitecture to estimate 3 textural parameters: fractal parameter Hmean, co-occurrence matrix, and run-length matrix, dual-energy x-ray absorptiometry to measure BMD, and mechanical compression tests to failure. All specimens were examined by computed tomography before and after compression. The prediction of the vertebral failure load was evaluated using multiple regression analyses.ResultsTwenty-seven vertebral fractures were observed with a mean failure load of 2636.3 N (standard deviation, 996 N). Fractal parameter Hmean, co-occurrence matrix, and run-length matrix were each significantly correlated with BMD (P< 0.01) and bone strength (P< 0.01). Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r = 0.701 to adjusted r = 0.806 (P< 0.01).ConclusionIn these excised vertebrae, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone.Level Of EvidenceN/A.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.