• Spine · Nov 2013

    Rheological and dynamic integrity of simulated degenerated disc and consequences after cross-linker augmentation.

    • Yu-Chun Hsu, Ya-Wen Kuo, Ya-Ching Chang, Mohammad Nikkhoo, and Jaw-Lin Wang.
    • *Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan; and †School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; **Department of Mechanical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan.
    • Spine. 2013 Nov 1;38(23):E1446-53.

    Study DesignAn in situ study using whole-organ culture system.ObjectiveTo study the effect of disc degeneration at different stages on its rheological and dynamic properties and to investigate the efficacy of exogenous cross-linking therapy.Summary Of Background DataDisc degeneration can involve protein denaturation or microdefects to the disc's collagen fiber network. A disc degeneration model using whole-organ culture technique can be effectively used for the screening of treatments of degenerated discs. Exogenous cross-linking therapy has been shown to enhance the mechanical properties of the disc by cross-linking collagen. However, the efficacy of this therapy on the degenerated disc is unclear.MethodsA total of 40 porcine thoracic discs were assigned to 5 groups: intact discs, moderately degenerated discs, moderately degenerated discs with cross-linker augmentation, severely degenerated discs, and severely degenerated discs with cross-linker augmentation. The disc degeneration was simulated by trypsin digestion and mechanical fatigue loading. Rheological properties, dynamic properties, water content, and histological analysis were conducted after a 7-day incubation.ResultsThe mechanical properties of moderate degenerated discs significantly decrease both in rheological and dynamic properties, and laminate structure disorganization was observed. Mechanical defects of severely degenerated discs resulted in disc height loss, an increase in the aggregate modulus and stiffness modulus, and a decrease in the damping coefficient, hydraulic permeability, and water content. Cross-linker augmentation significantly recovered mechanical properties of moderately degenerated discs and restored the water content compared with the intact disc. However, the augmentation did not fully repair the severely degenerated discs.ConclusionTrypsin-induced extracellular matrix damage resulted in a change of the disc's biomechanics. Cross-linker augmentation recovers the rheological and dynamic properties of moderately degenerated discs but not of the severely degenerated discs. The genipin cross-linker may be able to improve the proteoglycan depletion effect in the nucleus pulposus but may not be effective to restore the structural damage in the collagen molecule of the anulus fibrosus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.