• Spine · Oct 2013

    Intraoperative cone beam-computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): a cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation.

    • Ehsan Tabaraee, Anthony G Gibson, Dean G Karahalios, Eric A Potts, Jean-Pierre Mobasser, and Shane Burch.
    • *University of California, San Francisco, CA †NorthShore Medical, Rush Medical College, Chicago, IL; and ‡Goodman Campbell Brain & Spine, Indianapolis, IN.
    • Spine. 2013 Oct 15;38(22):1953-8.

    Study DesignCadaveric laboratory study.ObjectiveTo compare the accuracy, efficiency, and safety of intraoperative cone beam-computed tomography with navigation (O-ARM) with traditional intraoperative fluoroscopy (C-ARM) for the placement of pedicle screws.Summary Of Background DataRadiation exposure remains a concern with traditional methods of intraoperative imaging in spine surgery. The use of O-ARM has been proposed for more accurate and efficient spinal instrumentation. Understanding radiation imparted to patients and surgeons by O-ARM is important for assessing risks and benefits of this technology, especially in light of evolving indications.MethodsFour surgeons placed 160 pedicle screws on 8 cadavers without deformity. Eighty pedicle screws were placed using O-ARM and C-ARM each. Instrumentation was placed bilaterally in the thoracic (T1-T6) spine and lumbosacral junction (L5-S1) using a standard open technique, whereas minimally invasive surgery technique was used at the lumbar 3 to 4 (L3-L4) level. A "postoperative" computed tomography (CT) scan was performed on cadavers where instrumentation was done using the C-ARM. An independent musculoskeletal radiologist assessed final images for screw position. Time required to set up and instrumentation was recorded. Dosimeters were placed on multiple aspects of cadavers and surgeons to record radiation exposure.ResultsThere were no differences in breach rate between the O-ARM and C-ARM groups (5 vs. 7, χ= 0.63, P = 0.4). The setup time for the O-ARM group was longer than that for the C-ARM group (592 vs. 297 s, P < 0.05). However, the average total time was statistically the same (1629 vs. 1639 s, P = 0.96). Radiation exposure was higher for surgeons in the C-ARM group and cadavers in the O-ARM group. When a "postoperative" CT scan was included in the estimation of the total radiation exposure, there was less of difference between the groups, but still more for the O-ARM group.ConclusionIn cadavers without deformity, O-ARM use results in similar breach rates as C-ARM for the placement of pedicle screws. Time for instrumentation is shorter with the O-ARM, but requires a longer setup time. The O-ARM exposes less radiation to the surgeon, but higher doses to the cadaver.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.