-
- Drishti Shah, Wanhong Zheng, Lindsay Allen, Wenhui Wei, Traci LeMasters, Suresh Madhavan, and Usha Sambamoorthi.
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
- Curr Med Res Opin. 2021 May 1; 37 (5): 847-859.
ObjectivePresence of chronic non-cancer pain conditions (CNPC) among adults with major depressive disorder (MDD) may reduce benefits of antidepressant therapy, thereby increasing the possibility of treatment resistance. This study sought to investigate factors associated with treatment-resistant depression (TRD) among adults with MDD and CNPC using machine learning approaches.MethodsThis retrospective cohort study was conducted using a US claims database which included adults with newly diagnosed MDD and CNPC (January 2007-June 2017). TRD was identified using a clinical staging algorithm for claims data. Random forest (RF), a machine learning method, and logistic regression was used to identify factors associated with TRD. Initial model development included 42 known and/or probable factors that may be associated with TRD. The final refined model included 20 factors.ResultsIncluded in the sample were 23,645 patients (73% female mean age: 55 years; 78% with ≥2 CNPC, and 91% with joint pain/arthritis). Overall, 11.4% adults (N = 2684) met selected criteria for TRD. The five leading factors associated with TRD were the following: mental health specialist visits, polypharmacy (≥5 medications), psychotherapy use, anxiety, and age. Cross-validated logistic regression model indicated that those with TRD were younger, more likely to have anxiety, mental health specialist visits, polypharmacy, and psychotherapy use with adjusted odds ratios (AORs) ranging from 1.93 to 1.27 (all ps < .001).ConclusionMachine learning identified several factors that warrant further investigation and may serve as potential targets for clinical intervention to improve treatment outcomes in patients with TRD and CNPC.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.