• Spine · Nov 2013

    Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics.

    • Arin M Ellingson, Hitesh Mehta, David W Polly, Jutta Ellermann, and David J Nuckley.
    • *Department of Biomedical Engineering †Department of Orthopaedic Surgery ‡Department of Radiology, Center for Magnetic Resonance Research §Department of Physical Medicine and Rehabilitation, Musculoskeletal Biomechanics Research Laboratory, University of Minnesota, Minneapolis, MN.
    • Spine. 2013 Nov 15; 38 (24): E1533-40.

    Study DesignExperimental correlation study design to quantify features of disc health, including signal intensity and distinction between the annulus fibrosus and nucleus pulposus, with T2* magnetic resonance imaging (MRI) and correlate with the functional mechanics in corresponding motion segments.ObjectiveEstablish the relationship between disc health assessed by quantitative T2* MRI and functional lumbar mechanics.Summary Of Background DataDegeneration leads to altered biochemistry in the disc, affecting the mechanical competence. Clinical routine MRI sequences are not adequate in detecting early changes in degeneration and fails to correlate with pain or improve patient stratification. Quantitative T2* relaxation time mapping probes biochemical features and may offer more sensitivity in assessing disc degeneration.MethodsCadaveric lumbar spines were imaged using quantitative T2* mapping, as well as conventional T2-weighted MRI sequences. Discs were graded by the Pfirrmann scale, and features of disc health, including signal intensity (T2* intensity area) and distinction between the annulus fibrosus and nucleus pulposus (transition zone slope), were quantified by T2*. Each motion segment was subjected to pure moment bending to determine range of motion (ROM), neutral zone (NZ), and bending stiffness.ResultsT2* intensity area and transition zone slope were significantly correlated with flexion ROM (P = 0.015; P = 0.002), ratio of NZ/ROM (P = 0.010; P = 0.028), and stiffness (P = 0.044; P = 0.026), as well as lateral bending NZ/ROM (P = 0.005; P = 0.010) and stiffness (P = 0.022; P = 0.029). T2* intensity area was also correlated with lateral bending ROM (P = 0.023). Pfirrmann grade was only correlated with lateral bending NZ/ROM (P = 0.001) and stiffness (P = 0.007).ConclusionT2* mapping is a sensitive quantitative method capable of detecting changes associated with disc degeneration. Features of disc health quantified with T2* predicted altered functional mechanics of the lumbar spine better than traditional Pfirrmann grading. This new methodology and analysis technique may enhance the assessment of degeneration and enable greater patient stratification for therapeutic strategies.Level Of EvidenceN/A.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…