• Curr Alzheimer Res · Jul 2006

    Review

    Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer's disease: allopregnanolone as a proof of concept neurogenic agent.

    • Roberta Diaz Brinton and Jun Ming Wang.
    • Department of Molecular Pharmacology and Toxicology and Program in Neuroscience, Pharmaceutical Science Center, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA. rbrinton@hsc.usc.edu
    • Curr Alzheimer Res. 2006 Jul 1; 3 (3): 185-90.

    AbstractA major challenge not yet addressed by current therapeutic interventions for Alzheimer's disease (AD) is the regeneration of lost neurons and neural circuitry to restore cognitive function. Therapies that lead to cessation of the degenerative process still leave the brain riddled with deteriorated neural circuits and reduced neuron number. The discovery of neurogenesis in the adult brain and the regenerative potential of neural stem cells holds the promise for restoration of neural populations and regeneration of neural circuits necessary for cerebral function. While the regenerative potential of neural stem cells is great, so too is the challenge of delivering neural stem cells to the brain. Basic science analyses and human trials indicate that constituents of microenvironments within the brain determine the neurogenic potential, phenotypic differentiation of neural stem cells and magnitude of the neural stem cell pool. Multiple analyses have documented that dentate neurogenesis is regulated by multiple growth factors which are abundant during development and which dramatically decline with age. While the cause(s) of age-associated decline in neurogenesis remains to be fully determined, loss in growth factors, FGF-2, IGF-1 and VEGF, in the microenvironment of the subgranular zone (SGZ) are prime contributors to the reduced neurogenic potential. The decline in dentate neurogenesis can be observed as early as middle age. In the aged and AD brain, both the pool of neural stem cells and their proliferative potential are markedly diminished. In parallel, the level of potential regenerative factors is diminished in the brains of Alzheimer's patients compared to age-matched controls. Our efforts have been directed towards discovery and development of small, blood brain barrier penetrant molecules to promote endogenous proliferation of neural stem cells within the brain. These endeavors have led to the discovery that the neurosteroid alloprognanolone (APalpha) is a potent and highly efficacious proliferative agent in vitro and in vivo of both rodent and human neural stem cells. Results of our in vitro studies coupled with our more recent analyses in the triple transgenic mouse model of AD suggest that APalpha is a promising strategy for promoting neurogenesis in the aged brain and potentially for restoration of neuronal populations in brains recovering from neurodegenerative disease or injury. A brief overview of issues impacting the therapeutic potential of neurogenesis and the factors used to promote neurogenesis in the aging and degenerating brain is presented. Also included is a review of our current research into the neurogenic potential of the small molecule, blood brain barrier penetrating, neurosteroid allopregnanolone (APalpha).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.