• Clin Physiol Funct Imaging · May 2018

    Comparative Study Observational Study

    Comparison of cardiac output estimates by bioreactance and inert gas rebreathing methods during cardiopulmonary exercise testing.

    • Nduka C Okwose, Shakir Chowdhury, David Houghton, Michael I Trenell, Christopher Eggett, Matthew Bates, Guy A MacGowan, and Djordje G Jakovljevic.
    • Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK.
    • Clin Physiol Funct Imaging. 2018 May 1; 38 (3): 483-490.

    PurposeThis study assessed the agreement between cardiac output estimated by inert gas rebreathing and bioreactance methods at rest and during exercise.MethodsHaemodynamic measurements were assessed in 20 healthy individuals (11 females, nine males; aged 32 ± 10 years) using inert gas rebreathing and bioreactance methods. Gas exchange and haemodynamic data were measured simultaneously under rest and different stages (i.e. 30, 60, 90, 120, 150 and 180 W) of progressive graded cardiopulmonary exercise stress testing using a bicycle ergometer.ResultsAt rest, bioreactance produced significantly higher cardiac output values than inert gas rebreathing (7·8 ± 1·4 versus 6·5 ± 1·7 l min-1 , P = 0·01). At low-to-moderate exercise intensities (i.e. 30-90 W), bioreactance produced significantly higher cardiac outputs compared with rebreathing method (P<0·05). At workloads of 120 W and above, there was no significant difference in cardiac outputs between the two methods (P = 0·10). There was a strong relationship between the two methods (r = 0·82, P = 0·01). Bland-Altman analysis including rest and exercise data showed that inert gas rebreathing reported 1·95 l min-1 lower cardiac output than bioreactance, with lower and upper limits of agreement of -3·1-7·07 l min-1 . Analysis of peak exercise data showed a mean difference of 0·4 l min-1 (lower and upper limits of agreement of -4·9-5·7 l min-1 ) between both devices.ConclusionBioreactance and inert gas rebreathing methods show acceptable levels of agreement for estimating cardiac output at higher levels of metabolic demand. However, they cannot be used interchangeably due to strong disparity in results at rest and low-to-moderate exercise intensity.© 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…